Optimized peptide inhibitor Aqs1C targets LasR to disrupt quorum sensing and biofilm formation in Pseudomonas aeruginosa: Insights from MD simulations and in vitro studies.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hani A Alhadrami, Ahmed M Sayed, Hossam M Hassan, Mostafa E Rateb, Mostafa N Taha
{"title":"Optimized peptide inhibitor Aqs1C targets LasR to disrupt quorum sensing and biofilm formation in Pseudomonas aeruginosa: Insights from MD simulations and in vitro studies.","authors":"Hani A Alhadrami, Ahmed M Sayed, Hossam M Hassan, Mostafa E Rateb, Mostafa N Taha","doi":"10.1016/j.ijbiomac.2025.140119","DOIUrl":null,"url":null,"abstract":"<p><p>Pseudomonas aeruginosa (PA) is a critical pathogen, and its antibiotic resistance is largely driven by the quorum-sensing regulator LasR. Herein, we report the design, synthesis, and characterization of Aqs1C, a mutated peptide derivative of Aqs1, optimized to inhibit LasR and its quorum-sensing pathway. By introducing a targeted mutation, Aqs1C exhibited enhanced stability and binding affinity for LasR protein compared to its predecessor, Aqs1B. Using molecular dynamics simulations (MDS), the Aqs1C-LasR complex demonstrated a marked increase in structural stability, reflected in reduced root mean square deviation (RMSD) values and lower binding free energy. Electrostatic complementarity analysis showed stronger and more favorable interactions between Aqs1C and LasR. Further, GaMD experiments were able to reproduce the binding state between Aqs1C and LasR, indicating the binding mechanism between them. These molecular insights correlated with functional in vitro assays. Aqs1C effectively inhibited quorum-sensing-associated virulence factors in PA, involving biofilm formation (77.6 % inhibition), pyocyanin production (75.7 % inhibition), protease secretion (61.1 % inhibition), and rhamnolipid production (74.1 % inhibition), at a 100 μg/mL concentration, in a comparable or superior pattern to azithromycin (AZM). Molecular modelling, MDS, and GaMD insights and in vitro assays established Aqs1C as a promising candidate for therapeutic development to mitigate PA infections through targeted quorum-sensing disruption.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140119"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.140119","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pseudomonas aeruginosa (PA) is a critical pathogen, and its antibiotic resistance is largely driven by the quorum-sensing regulator LasR. Herein, we report the design, synthesis, and characterization of Aqs1C, a mutated peptide derivative of Aqs1, optimized to inhibit LasR and its quorum-sensing pathway. By introducing a targeted mutation, Aqs1C exhibited enhanced stability and binding affinity for LasR protein compared to its predecessor, Aqs1B. Using molecular dynamics simulations (MDS), the Aqs1C-LasR complex demonstrated a marked increase in structural stability, reflected in reduced root mean square deviation (RMSD) values and lower binding free energy. Electrostatic complementarity analysis showed stronger and more favorable interactions between Aqs1C and LasR. Further, GaMD experiments were able to reproduce the binding state between Aqs1C and LasR, indicating the binding mechanism between them. These molecular insights correlated with functional in vitro assays. Aqs1C effectively inhibited quorum-sensing-associated virulence factors in PA, involving biofilm formation (77.6 % inhibition), pyocyanin production (75.7 % inhibition), protease secretion (61.1 % inhibition), and rhamnolipid production (74.1 % inhibition), at a 100 μg/mL concentration, in a comparable or superior pattern to azithromycin (AZM). Molecular modelling, MDS, and GaMD insights and in vitro assays established Aqs1C as a promising candidate for therapeutic development to mitigate PA infections through targeted quorum-sensing disruption.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信