Efficient and rapid generation of neural stem cells by direct conversion of fibroblasts with single microRNAs.

IF 4 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
STEM CELLS Pub Date : 2025-03-10 DOI:10.1093/stmcls/sxaf003
Yuanyuan Li, Jing Sun, Tingting Xu, Bo Dai, Yuesi Wang
{"title":"Efficient and rapid generation of neural stem cells by direct conversion of fibroblasts with single microRNAs.","authors":"Yuanyuan Li, Jing Sun, Tingting Xu, Bo Dai, Yuesi Wang","doi":"10.1093/stmcls/sxaf003","DOIUrl":null,"url":null,"abstract":"<p><p>Neural stem cells (NSCs) hold great potential in neurodegenerative disease therapy, drug screening, and disease modeling. However, current approaches for induced NSCs (iNSCs) generation from somatic cells are still slow and inefficient. Here we report the establishment of a rapid and efficient method of iNSCs generation from human and mouse fibroblasts by using single microRNAs (miR-302a). These iNSCs exhibited morphological, molecular and functional properties resembling those of adult human and mouse NSCs, respectively. Additionally, human iNSCs can be expanded for more than 20 passages in vitro. Furthermore, miR-302a alone was demonstrated to be sufficient to reprogram both human and mouse fibroblasts into iNSCs. Our results showed a method of direct conversion of autologous fibroblasts with miR-302a into iNSCs, providing a rapid and efficient strategy to generate iNSCs for both basic research and clinical applications.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxaf003","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neural stem cells (NSCs) hold great potential in neurodegenerative disease therapy, drug screening, and disease modeling. However, current approaches for induced NSCs (iNSCs) generation from somatic cells are still slow and inefficient. Here we report the establishment of a rapid and efficient method of iNSCs generation from human and mouse fibroblasts by using single microRNAs (miR-302a). These iNSCs exhibited morphological, molecular and functional properties resembling those of adult human and mouse NSCs, respectively. Additionally, human iNSCs can be expanded for more than 20 passages in vitro. Furthermore, miR-302a alone was demonstrated to be sufficient to reprogram both human and mouse fibroblasts into iNSCs. Our results showed a method of direct conversion of autologous fibroblasts with miR-302a into iNSCs, providing a rapid and efficient strategy to generate iNSCs for both basic research and clinical applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
STEM CELLS
STEM CELLS 医学-生物工程与应用微生物
CiteScore
10.30
自引率
1.90%
发文量
104
审稿时长
3 months
期刊介绍: STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology. STEM CELLS covers: Cancer Stem Cells, Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells, Regenerative Medicine, Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics, Tissue-Specific Stem Cells, Translational and Clinical Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信