{"title":"Effects of isolation methods on physicochemical properties of defatted starch from the acorn (Quercus brantii).","authors":"Sepideh Erfan, Roya Abka-Khajouei, Javad Keramat, Nasser Hamdami","doi":"10.1016/j.ijbiomac.2025.140300","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the innovative combined effects of alkaline isolation with ultrasound pretreatment on the physicochemical properties of acorn (Quercus brantii) starch. The optimal pH for maximizing the yield of alkaline-isolated acorn starch (AAS) was determined, followed by comparison with alkaline-isolated defatted acorn starch (ADAS), ultrasound-pretreated acorn starch (UAS), and ultrasound-pretreated defatted acorn starch (UDAS). The results demonstrated substantial improvements in yield and purity, with the highest yield (68.97 ± 0.16 %) achieved at pH 9. ADAS showed high purity, with protein and fat contents of 1.82 ± 0.07 % and 0.025 ± 0.02 %, respectively. UDAS exhibited superior swelling power, solubility, and turbidity, indicating enhanced functional properties. Scanning Electron Microscopy (SEM) revealed variations in granule sizes across treatments, from 12.42 μm (ADAS) to 10.72 μm (UDAS). X-ray diffraction analysis showed C-type patterns with crystallinity ranging from 31.25 % (ADAS) to 26 % (UAS). Thermal analysis demonstrated UDAS had the highest peak viscosity and lowest thermal parameters. Texture analysis indicated that AAS formed a softer gel, while ADAS displayed greater hardness and gumminess. These findings highlight the effectiveness of combining alkaline isolation with ultrasound pretreatment to improve acorn starch quality for sustainable applications in food and biotechnology.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140300"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.140300","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the innovative combined effects of alkaline isolation with ultrasound pretreatment on the physicochemical properties of acorn (Quercus brantii) starch. The optimal pH for maximizing the yield of alkaline-isolated acorn starch (AAS) was determined, followed by comparison with alkaline-isolated defatted acorn starch (ADAS), ultrasound-pretreated acorn starch (UAS), and ultrasound-pretreated defatted acorn starch (UDAS). The results demonstrated substantial improvements in yield and purity, with the highest yield (68.97 ± 0.16 %) achieved at pH 9. ADAS showed high purity, with protein and fat contents of 1.82 ± 0.07 % and 0.025 ± 0.02 %, respectively. UDAS exhibited superior swelling power, solubility, and turbidity, indicating enhanced functional properties. Scanning Electron Microscopy (SEM) revealed variations in granule sizes across treatments, from 12.42 μm (ADAS) to 10.72 μm (UDAS). X-ray diffraction analysis showed C-type patterns with crystallinity ranging from 31.25 % (ADAS) to 26 % (UAS). Thermal analysis demonstrated UDAS had the highest peak viscosity and lowest thermal parameters. Texture analysis indicated that AAS formed a softer gel, while ADAS displayed greater hardness and gumminess. These findings highlight the effectiveness of combining alkaline isolation with ultrasound pretreatment to improve acorn starch quality for sustainable applications in food and biotechnology.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.