MOF scaffold for anchoring platinum-nickel nanoparticles with enhanced oxidase-like activity to improve lateral flow immunoassay diagnosis.

IF 10.7 1区 生物学 Q1 BIOPHYSICS
Biosensors and Bioelectronics Pub Date : 2025-04-01 Epub Date: 2025-01-20 DOI:10.1016/j.bios.2025.117189
Jin Shen, Ying Wang, Zhengna Duan, Dangqin Jin, Yun Shu, Xiaoya Hu
{"title":"MOF scaffold for anchoring platinum-nickel nanoparticles with enhanced oxidase-like activity to improve lateral flow immunoassay diagnosis.","authors":"Jin Shen, Ying Wang, Zhengna Duan, Dangqin Jin, Yun Shu, Xiaoya Hu","doi":"10.1016/j.bios.2025.117189","DOIUrl":null,"url":null,"abstract":"<p><p>Noble metal nanoparticles have attracted tremendous attention as the promising signal reporters for catalytic-colorimetric lateral flow immunoassay (LFIA). However, it remains great challenges for improving their stability and catalytic activity. Herein, first, a kind of porphyrinic based metal-organic framework (MOF) was used as a carrier for loading platinum (Pt) nanoparticles to avoid its aggregation. Moreover, nickel (Ni) atoms were dopped into Pt nanoparticles to adjust crystal structure, thus greatly improving catalytic activity. The resulting MOF@PtNi nanocomposite showed enhanced colorimetric signal brightness and excellent oxidase-like activity, which can improve sensitivity via amplifying the color signal. The catalytic mechanism was further studied by scavenger and electron paramagnetic resonance analysis. Furthermore, integrated with the competitive immunization LFIA platform, the high sensitivity colorimetric detection of human immunoglobulin G was realized with a detection limit of 0.378 ng/mL and 0.269 ng/mL for pre- and post-catalytic detection, respectively. In addition, this MOF@PtNi based catalytic-colorimetric LFIA was used for detection of clinical serum samples and the results agreed well with that measured by the standard method. Therefore, this study helps open up the application of proposed catalytic-colorimetric nanocomposite in the ultrasensitive LFIA for point-of-care diseases diagnosis.</p>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"273 ","pages":"117189"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.bios.2025.117189","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Noble metal nanoparticles have attracted tremendous attention as the promising signal reporters for catalytic-colorimetric lateral flow immunoassay (LFIA). However, it remains great challenges for improving their stability and catalytic activity. Herein, first, a kind of porphyrinic based metal-organic framework (MOF) was used as a carrier for loading platinum (Pt) nanoparticles to avoid its aggregation. Moreover, nickel (Ni) atoms were dopped into Pt nanoparticles to adjust crystal structure, thus greatly improving catalytic activity. The resulting MOF@PtNi nanocomposite showed enhanced colorimetric signal brightness and excellent oxidase-like activity, which can improve sensitivity via amplifying the color signal. The catalytic mechanism was further studied by scavenger and electron paramagnetic resonance analysis. Furthermore, integrated with the competitive immunization LFIA platform, the high sensitivity colorimetric detection of human immunoglobulin G was realized with a detection limit of 0.378 ng/mL and 0.269 ng/mL for pre- and post-catalytic detection, respectively. In addition, this MOF@PtNi based catalytic-colorimetric LFIA was used for detection of clinical serum samples and the results agreed well with that measured by the standard method. Therefore, this study helps open up the application of proposed catalytic-colorimetric nanocomposite in the ultrasensitive LFIA for point-of-care diseases diagnosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors and Bioelectronics
Biosensors and Bioelectronics 工程技术-电化学
CiteScore
20.80
自引率
7.10%
发文量
1006
审稿时长
29 days
期刊介绍: Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信