Carina S P Vieira, Marcela A Segundo, Alberto N Araújo
{"title":"Cytochrome P450 electrochemical biosensors transforming in vitro metabolism testing - Opportunities and challenges.","authors":"Carina S P Vieira, Marcela A Segundo, Alberto N Araújo","doi":"10.1016/j.bioelechem.2025.108913","DOIUrl":null,"url":null,"abstract":"<p><p>The ability of the living world to flourish in the face of constant exposure to dangerous chemicals depends on the management ability of a widespread group of enzymes known as heme-thiolate monooxygenases or cytochrome P450 superfamily. About three-quarters of all reactions determining the metabolism of endogenous compounds, of those carried in foods, of taken drugs, or even of synthetic chemicals discarded into the environment depend on their catalytic performance. The chromatographic and (photo)luminometric methods routinely used as predictive and analytical tools in laboratories have significant drawbacks ranging from limited shelf-life of reagents, use of synthetic substrates, laborious and tedious procedures for highly sensitive detection. In this review, alternative electrochemical biosensors using the cytochrome P450 enzymes as bio-element are emphasized in their main aspects as well regarding their implementation and usefulness. Despite the various schemes proposed for the implementation, reports on real applications are scant for several reasons, including low reaction rates, broad substrate specificity, uncoupling reactions occurrence, and the need for expensive electron transfer partners to promote electron transfer. Finally, the prospect for future developments is introduced, focusing on integrating miniaturized systems with electrochemical techniques, alongside optimizing enzyme immobilization methods and electrode modifications to improve enzymatic stability and enhance sensor reliability. This progress represents a crucial step towards the creation of portable biosensors that mimic human physiological responses, supporting the precision medicine approach.</p>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"163 ","pages":"108913"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioelechem.2025.108913","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The ability of the living world to flourish in the face of constant exposure to dangerous chemicals depends on the management ability of a widespread group of enzymes known as heme-thiolate monooxygenases or cytochrome P450 superfamily. About three-quarters of all reactions determining the metabolism of endogenous compounds, of those carried in foods, of taken drugs, or even of synthetic chemicals discarded into the environment depend on their catalytic performance. The chromatographic and (photo)luminometric methods routinely used as predictive and analytical tools in laboratories have significant drawbacks ranging from limited shelf-life of reagents, use of synthetic substrates, laborious and tedious procedures for highly sensitive detection. In this review, alternative electrochemical biosensors using the cytochrome P450 enzymes as bio-element are emphasized in their main aspects as well regarding their implementation and usefulness. Despite the various schemes proposed for the implementation, reports on real applications are scant for several reasons, including low reaction rates, broad substrate specificity, uncoupling reactions occurrence, and the need for expensive electron transfer partners to promote electron transfer. Finally, the prospect for future developments is introduced, focusing on integrating miniaturized systems with electrochemical techniques, alongside optimizing enzyme immobilization methods and electrode modifications to improve enzymatic stability and enhance sensor reliability. This progress represents a crucial step towards the creation of portable biosensors that mimic human physiological responses, supporting the precision medicine approach.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.