Investigation on capturing bedding planes in laminated shale through advanced physics-informed image processing for multiscale geomechanical simulation

IF 6.9 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Gaobo Zhao , Mindi Ruan , Deniz Tuncay , Xin Li
{"title":"Investigation on capturing bedding planes in laminated shale through advanced physics-informed image processing for multiscale geomechanical simulation","authors":"Gaobo Zhao ,&nbsp;Mindi Ruan ,&nbsp;Deniz Tuncay ,&nbsp;Xin Li","doi":"10.1016/j.enggeo.2025.107929","DOIUrl":null,"url":null,"abstract":"<div><div>Shale is characterized by its laminated and fissile nature, consisting of numerous thin layers that easily split along bedding planes. Traditional geomechanical simulations often simplify shale's complex structure by representing bedding planes as continuous and equidistant. While this approach is numerically efficient and useful for approximating general shale behavior, it limits our understanding of the shale's true mechanical response to mining-induced stress. This study proposes an advanced physics-informed image processing method to capture bedding planes across different orientations, scales, and shale types. The method includes five procedures: 1) projection transfer, where a 3D cylinder is projected onto a 2D image; 2) edge detection, where physics-informed edges are detected to obtain bedding plane pixels; 3) clustering, where bedding plane pixels are clustered to form bedding plane lines; 4) representation of bedding planes; and 5) feature extraction of bedding planes. Our method effectively captures bedding planes across different orientations (0°, 45°, and 90°), scales (interim bedding planes at the laboratory scale and ordinary bedding planes at the rock mass scale), and shale types (Opalinus shale, sandy shale, gray shale, black shale, and carbonaceous shale). The geometric information extracted from the bedding planes—including coordinates, number, spacing, length, and distribution characteristics—has been summarized into a comprehensive database for different shales at different scales. The results show that: at the laboratory scale, the captured interim bedding planes are neither continuous nor equidistant. Their lengths follow a log-normal distribution, with the mean length (LN) ranging from 1.227 to 1.823 and the standard deviation (LN) varying between 1.069 and 5.062. The fitting statistical parameters, including the mean and standard deviation of this distribution, have been summarized. At the rock mass scale, the ordinary bedding planes are continuous but not equidistant. Successful multiscale geomechanical simulations in UDEC and FLAC3D were conducted to model uniaxial compression tests at the laboratory scale and shale roof failure at the entry scale, calibrated using laboratory and field observations.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"347 ","pages":"Article 107929"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795225000250","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Shale is characterized by its laminated and fissile nature, consisting of numerous thin layers that easily split along bedding planes. Traditional geomechanical simulations often simplify shale's complex structure by representing bedding planes as continuous and equidistant. While this approach is numerically efficient and useful for approximating general shale behavior, it limits our understanding of the shale's true mechanical response to mining-induced stress. This study proposes an advanced physics-informed image processing method to capture bedding planes across different orientations, scales, and shale types. The method includes five procedures: 1) projection transfer, where a 3D cylinder is projected onto a 2D image; 2) edge detection, where physics-informed edges are detected to obtain bedding plane pixels; 3) clustering, where bedding plane pixels are clustered to form bedding plane lines; 4) representation of bedding planes; and 5) feature extraction of bedding planes. Our method effectively captures bedding planes across different orientations (0°, 45°, and 90°), scales (interim bedding planes at the laboratory scale and ordinary bedding planes at the rock mass scale), and shale types (Opalinus shale, sandy shale, gray shale, black shale, and carbonaceous shale). The geometric information extracted from the bedding planes—including coordinates, number, spacing, length, and distribution characteristics—has been summarized into a comprehensive database for different shales at different scales. The results show that: at the laboratory scale, the captured interim bedding planes are neither continuous nor equidistant. Their lengths follow a log-normal distribution, with the mean length (LN) ranging from 1.227 to 1.823 and the standard deviation (LN) varying between 1.069 and 5.062. The fitting statistical parameters, including the mean and standard deviation of this distribution, have been summarized. At the rock mass scale, the ordinary bedding planes are continuous but not equidistant. Successful multiscale geomechanical simulations in UDEC and FLAC3D were conducted to model uniaxial compression tests at the laboratory scale and shale roof failure at the entry scale, calibrated using laboratory and field observations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Geology
Engineering Geology 地学-地球科学综合
CiteScore
13.70
自引率
12.20%
发文量
327
审稿时长
5.6 months
期刊介绍: Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信