An asymptotic preserving and energy stable scheme for the Euler system with congestion constraint

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
K.R. Arun, A. Krishnamurthy, H. Maharna
{"title":"An asymptotic preserving and energy stable scheme for the Euler system with congestion constraint","authors":"K.R. Arun, A. Krishnamurthy, H. Maharna","doi":"10.1016/j.amc.2025.129306","DOIUrl":null,"url":null,"abstract":"In this work, we design and analyze an asymptotic preserving (AP), semi-implicit finite volume scheme for the scaled compressible isentropic Euler system with a singular pressure law known as the congestion pressure law. The congestion pressure law imposes a maximal density constraint of the form <mml:math altimg=\"si1.svg\"><mml:mn>0</mml:mn><mml:mo>≤</mml:mo><mml:mi>ϱ</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">&lt;</mml:mo><mml:mn>1</mml:mn></mml:math>, and the scaling introduces a small parameter <ce:italic>ε</ce:italic> in order to control the stiffness of the density constraint. As <mml:math altimg=\"si2.svg\"><mml:mi>ε</mml:mi><mml:mo stretchy=\"false\">→</mml:mo><mml:mn>0</mml:mn></mml:math>, the solutions of the compressible system converge to solutions of the so-called free-congested Euler equations that couples compressible and incompressible dynamics. We show that the proposed scheme is positivity preserving and energy stable. In addition, we also show that the numerical densities satisfy a discrete variant of the constraint. By means of extensive numerical case studies, we verify the efficacy of the scheme and show that the scheme is able to capture the two dynamics in the limiting regime, thereby proving the AP property.","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"58 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.amc.2025.129306","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we design and analyze an asymptotic preserving (AP), semi-implicit finite volume scheme for the scaled compressible isentropic Euler system with a singular pressure law known as the congestion pressure law. The congestion pressure law imposes a maximal density constraint of the form 0ϱ<1, and the scaling introduces a small parameter ε in order to control the stiffness of the density constraint. As ε0, the solutions of the compressible system converge to solutions of the so-called free-congested Euler equations that couples compressible and incompressible dynamics. We show that the proposed scheme is positivity preserving and energy stable. In addition, we also show that the numerical densities satisfy a discrete variant of the constraint. By means of extensive numerical case studies, we verify the efficacy of the scheme and show that the scheme is able to capture the two dynamics in the limiting regime, thereby proving the AP property.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信