Graphs having two main eigenvalues and arbitrarily many distinct vertex degrees

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Mohammad Ghebleh, Salem Al-Yakoob, Ali Kanso, Dragan Stevanović
{"title":"Graphs having two main eigenvalues and arbitrarily many distinct vertex degrees","authors":"Mohammad Ghebleh, Salem Al-Yakoob, Ali Kanso, Dragan Stevanović","doi":"10.1016/j.amc.2025.129311","DOIUrl":null,"url":null,"abstract":"Arif, Hayat and Khan [J Appl Math Comput 69 (2023) 2549–2571] recently proposed the problem of finding explicit construction for (an infinite family of) graphs having at least three distinct vertex degrees and two main eigenvalues. After computationally identifying small examples of such graphs, we fully solve this problem by showing that the edge-disjoint union of an almost semiregular graph <ce:italic>G</ce:italic> and a regular graph <ce:italic>H</ce:italic> defined on the constant part of <ce:italic>G</ce:italic> yields a new harmonic graph under mild conditions. As a special case, this result provides for every integer <mml:math altimg=\"si1.svg\"><mml:mi>b</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:math> an explicit construction of a graph with two main eigenvalues and <mml:math altimg=\"si132.svg\"><mml:mn>2</mml:mn><mml:mi>b</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">−</mml:mo><mml:mn>1</mml:mn></mml:math> distinct vertex degrees. This construction also provides partial answers to questions posed by Hayat et al. in [Linear Algebra Appl 511 (2016) 318–327].","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"35 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.amc.2025.129311","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Arif, Hayat and Khan [J Appl Math Comput 69 (2023) 2549–2571] recently proposed the problem of finding explicit construction for (an infinite family of) graphs having at least three distinct vertex degrees and two main eigenvalues. After computationally identifying small examples of such graphs, we fully solve this problem by showing that the edge-disjoint union of an almost semiregular graph G and a regular graph H defined on the constant part of G yields a new harmonic graph under mild conditions. As a special case, this result provides for every integer b2 an explicit construction of a graph with two main eigenvalues and 2b1 distinct vertex degrees. This construction also provides partial answers to questions posed by Hayat et al. in [Linear Algebra Appl 511 (2016) 318–327].
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信