{"title":"Transcription near arrested DNA replication forks triggers ribosomal DNA copy number changes","authors":"Mariko Sasaki, Takehiko Kobayashi","doi":"10.1093/nar/gkaf014","DOIUrl":null,"url":null,"abstract":"DNA copy number changes via chromosomal rearrangements or the production of extrachromosomal circular DNA. Here, we demonstrate that the histone deacetylase Sir2 maintains the copy number of budding yeast ribosomal RNA gene [ribosomal DNA (rDNA)] by suppressing end resection of DNA double-strand breaks (DSBs) formed upon DNA replication fork arrest in the rDNA and their subsequent homologous recombination (HR)-mediated rDNA copy number changes during DSB repair. Sir2 represses transcription from the regulatory promoter E-pro located near the fork arresting site. When Sir2 is absent, this transcription is stimulated but terminated by arrested replication forks. This transcription–replication collision induces DSB formation, DSB end resection and the Mre11-Rad50-Xrs2 complex-dependent DSB repair that is prone to chromosomal rDNA copy number changes and the production of extrachromosomal rDNA circles. Therefore, repression of transcription near arrested replication forks is critical for the maintenance of rDNA stability by directing DSB repair into the HR-independent, rearrangement-free pathway.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"19 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf014","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
DNA copy number changes via chromosomal rearrangements or the production of extrachromosomal circular DNA. Here, we demonstrate that the histone deacetylase Sir2 maintains the copy number of budding yeast ribosomal RNA gene [ribosomal DNA (rDNA)] by suppressing end resection of DNA double-strand breaks (DSBs) formed upon DNA replication fork arrest in the rDNA and their subsequent homologous recombination (HR)-mediated rDNA copy number changes during DSB repair. Sir2 represses transcription from the regulatory promoter E-pro located near the fork arresting site. When Sir2 is absent, this transcription is stimulated but terminated by arrested replication forks. This transcription–replication collision induces DSB formation, DSB end resection and the Mre11-Rad50-Xrs2 complex-dependent DSB repair that is prone to chromosomal rDNA copy number changes and the production of extrachromosomal rDNA circles. Therefore, repression of transcription near arrested replication forks is critical for the maintenance of rDNA stability by directing DSB repair into the HR-independent, rearrangement-free pathway.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.