Hypericin photoactivation induces triple-negative breast cancer cells pyroptosis by targeting the ROS/CALR/Caspase-3/GSDME pathway

IF 11.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Chen Liang, Xiao Liu, Jie Yu, Lingyun Shi, Wenchao Wei, Yalu Zhu, Maoping Feng, Tingting Tang, Dameng Li, Tao Yang, Junnian Zheng, Bo Ma, Liang Wei
{"title":"Hypericin photoactivation induces triple-negative breast cancer cells pyroptosis by targeting the ROS/CALR/Caspase-3/GSDME pathway","authors":"Chen Liang, Xiao Liu, Jie Yu, Lingyun Shi, Wenchao Wei, Yalu Zhu, Maoping Feng, Tingting Tang, Dameng Li, Tao Yang, Junnian Zheng, Bo Ma, Liang Wei","doi":"10.1016/j.jare.2025.01.042","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>Hypericin (HP), a natural photosensitizer, has demonstrated great efficacy in photodynamic therapy (PDT) for cancer treatment. In addition to the induction of apoptosis and necrosis through reactive oxygen species (ROS) generation, the therapeutic mechanisms and targets of PDT-HP remain unknown.<h3>Objectives</h3>To investigate the direct targets and mechanisms of action of photoactivated hypericin in the inhibition of triple-negative breast cancer (TNBC).<h3>Methods</h3>Cell pyroptosis was examined via LDH release, SYTOX Green staining, and ELISA. RNA sequencing, network pharmacology, drug affinity target stability (DARTS)-tandem mass spectrometry (MS/MS), and molecular docking were employed to identify drug targets. Furthermore, immunoblotting and flow cytometry were utilized to elucidate the mechanisms of drug action.<h3>Results</h3>Our research revealed that PDT-HP can induce pyroptosis in TNBC cells. Further investigation revealed that PDT-HP induces endoplasmic reticulum stress, activating Caspase-3 and gasdermin E (GSDME) to trigger TNBC cell pyroptosis. RNA-seq, network pharmacology, and DARTS-MS/MS proteomic analyses revealed that the endoplasmic reticulum protein calreticulin (CALR) is a potential HP target and that interfering with CALR inhibited PDT-HP-induced pyroptosis. During PDT-HP treatment, the interaction between CALR and SERCA2 inactivates SERCA2, increasing the susceptibility of cells to increased intracellular Ca<sup>2+</sup> levels under oxidative stress. This triggered endoplasmic reticulum stress and activated Caspase3, which further cleaved GSDME, releasing GSDME-N and ultimately leading to pyroptosis in TNBC cells.<h3>Conclusion</h3>In this study, we provide insight into the antitumor mechanism by examining the pharmacological mechanism by which PDT-HP regulates TNBC cell pyroptosis via the ROS/CALR/Caspase-3/GSDME signaling axis.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"111 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.01.042","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Hypericin (HP), a natural photosensitizer, has demonstrated great efficacy in photodynamic therapy (PDT) for cancer treatment. In addition to the induction of apoptosis and necrosis through reactive oxygen species (ROS) generation, the therapeutic mechanisms and targets of PDT-HP remain unknown.

Objectives

To investigate the direct targets and mechanisms of action of photoactivated hypericin in the inhibition of triple-negative breast cancer (TNBC).

Methods

Cell pyroptosis was examined via LDH release, SYTOX Green staining, and ELISA. RNA sequencing, network pharmacology, drug affinity target stability (DARTS)-tandem mass spectrometry (MS/MS), and molecular docking were employed to identify drug targets. Furthermore, immunoblotting and flow cytometry were utilized to elucidate the mechanisms of drug action.

Results

Our research revealed that PDT-HP can induce pyroptosis in TNBC cells. Further investigation revealed that PDT-HP induces endoplasmic reticulum stress, activating Caspase-3 and gasdermin E (GSDME) to trigger TNBC cell pyroptosis. RNA-seq, network pharmacology, and DARTS-MS/MS proteomic analyses revealed that the endoplasmic reticulum protein calreticulin (CALR) is a potential HP target and that interfering with CALR inhibited PDT-HP-induced pyroptosis. During PDT-HP treatment, the interaction between CALR and SERCA2 inactivates SERCA2, increasing the susceptibility of cells to increased intracellular Ca2+ levels under oxidative stress. This triggered endoplasmic reticulum stress and activated Caspase3, which further cleaved GSDME, releasing GSDME-N and ultimately leading to pyroptosis in TNBC cells.

Conclusion

In this study, we provide insight into the antitumor mechanism by examining the pharmacological mechanism by which PDT-HP regulates TNBC cell pyroptosis via the ROS/CALR/Caspase-3/GSDME signaling axis.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advanced Research
Journal of Advanced Research Multidisciplinary-Multidisciplinary
CiteScore
21.60
自引率
0.90%
发文量
280
审稿时长
12 weeks
期刊介绍: Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences. The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.
文献相关原料
公司名称
产品信息
索莱宝
Pronase E
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信