{"title":"Shifted dominant flood drivers of an alpine glacierized catchment in the Tianshan region revealed through interpretable deep learning","authors":"Wenting Liang, Weili Duan, Yaning Chen, Gonghuan Fang, Shan Zou, Zhi Li, Zewei Qiu, Haodong Lyu","doi":"10.1038/s41612-025-00918-z","DOIUrl":null,"url":null,"abstract":"<p>The Kumalak River, a typical alpine glacierized catchment in the Tianshan region, experiences complex flooding driven by glacier meltwater, snowmelt, and rainfall. However, the mechanisms driving these processes under climate change remain unclear. To address this, a SWAT-Glacier hydrological model and a degree–day factor model were used for snowmelt, glacier meltwater, and rainfall calculations. Two Long Short-Term Memory (LSTM) models (LSTM-SG and LSTM-DDF) were developed using these inputs, and additive decomposition and integrated gradient methods were applied to interpret flood mechanisms. Glacier meltwater was found to dominate annual maximum flood (AMF) events, while snowmelt drove annual spring maximum flood (AMFSp) events. For AMF events (1960–2018), contributions were 10.01–12.21% from snowmelt, 60.49–60.92% from glacier meltwater, and 26.86–29.50% from rainfall. For AMFSp events (1961–2018), contributions were 48.49–56.08% from snowmelt, 16.12–22.08% from glacier meltwater, and 27.79–29.42% from rainfall. These findings provide critical insights for enhancing flood prediction and optimizing water resource management.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"13 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-00918-z","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Kumalak River, a typical alpine glacierized catchment in the Tianshan region, experiences complex flooding driven by glacier meltwater, snowmelt, and rainfall. However, the mechanisms driving these processes under climate change remain unclear. To address this, a SWAT-Glacier hydrological model and a degree–day factor model were used for snowmelt, glacier meltwater, and rainfall calculations. Two Long Short-Term Memory (LSTM) models (LSTM-SG and LSTM-DDF) were developed using these inputs, and additive decomposition and integrated gradient methods were applied to interpret flood mechanisms. Glacier meltwater was found to dominate annual maximum flood (AMF) events, while snowmelt drove annual spring maximum flood (AMFSp) events. For AMF events (1960–2018), contributions were 10.01–12.21% from snowmelt, 60.49–60.92% from glacier meltwater, and 26.86–29.50% from rainfall. For AMFSp events (1961–2018), contributions were 48.49–56.08% from snowmelt, 16.12–22.08% from glacier meltwater, and 27.79–29.42% from rainfall. These findings provide critical insights for enhancing flood prediction and optimizing water resource management.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.