Water-regulated viscosity-plasticity phase transitions in a peptide self-assembled muscle-like hydrogel

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yu Fang, Junhui Shi, Juan Liang, Dan Ma, Huaimin Wang
{"title":"Water-regulated viscosity-plasticity phase transitions in a peptide self-assembled muscle-like hydrogel","authors":"Yu Fang, Junhui Shi, Juan Liang, Dan Ma, Huaimin Wang","doi":"10.1038/s41467-025-56415-7","DOIUrl":null,"url":null,"abstract":"<p>The self-assembly of small molecules through non-covalent interactions is an emerging and promising strategy for building dynamic, stable, and large-scale structures. One remaining challenge is making the non-covalent interactions occur in the ideal positions to generate strength comparable to that of covalent bonds. This work shows that small molecule YAWF can self-assemble into a liquid-crystal hydrogel (LCH), the mechanical properties of which could be controlled by water. LCH can be used to construct stable solid threads with a length of over 1 meter by applying an external force on 2 µL of gel solution followed by water-regulated crystallization. These solid threads can support 250 times their weight. Cryogenic electron microscopy (Cryo-EM) analysis unravels the three-dimensional structure of the liquid-crystal fiber (elongated helix with C2 symmetry) at an atomic resolution. The multiscale mechanics of this material depend on the specificity of the molecular structure, and the water-controlled hierarchical and sophisticated self-assembly.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"53 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56415-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The self-assembly of small molecules through non-covalent interactions is an emerging and promising strategy for building dynamic, stable, and large-scale structures. One remaining challenge is making the non-covalent interactions occur in the ideal positions to generate strength comparable to that of covalent bonds. This work shows that small molecule YAWF can self-assemble into a liquid-crystal hydrogel (LCH), the mechanical properties of which could be controlled by water. LCH can be used to construct stable solid threads with a length of over 1 meter by applying an external force on 2 µL of gel solution followed by water-regulated crystallization. These solid threads can support 250 times their weight. Cryogenic electron microscopy (Cryo-EM) analysis unravels the three-dimensional structure of the liquid-crystal fiber (elongated helix with C2 symmetry) at an atomic resolution. The multiscale mechanics of this material depend on the specificity of the molecular structure, and the water-controlled hierarchical and sophisticated self-assembly.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信