Toward Product Safety and Circularity: Understanding the Information Structure of Global Databases on Chemicals in Products and Articles

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Chijioke Olisah, Lisa Melymuk, Robin Vestergren, Karin Rumar, Tonie Wickman, Nina Melander, Petteri Talasniemi, Sicco Brandsma, Urban Boije af Gennäs, Martin Scheringer
{"title":"Toward Product Safety and Circularity: Understanding the Information Structure of Global Databases on Chemicals in Products and Articles","authors":"Chijioke Olisah, Lisa Melymuk, Robin Vestergren, Karin Rumar, Tonie Wickman, Nina Melander, Petteri Talasniemi, Sicco Brandsma, Urban Boije af Gennäs, Martin Scheringer","doi":"10.1021/acs.est.4c07992","DOIUrl":null,"url":null,"abstract":"Access to information about chemicals in products and articles is critical for supporting enforcement of chemical regulations, assessing risks from chemicals, allowing informed consumer choices, and enabling product circularity. In this work, we identified and evaluated available databases (DBs) on chemicals in products and articles from the literature using a defined protocol and from European national market surveillance authorities, nongovernmental agencies, and industrial sector groups using questionnaires. This is the first comprehensive review of DBs that provide information about chemicals in products and articles. A majority of these DBs are heterogeneous in terms of scope, ontologies, and data structures. Among the 57 identified DBs, 49 identified specific substances and only 30 reported their concentration in their products. In addition, 35 DBs included hazard information and 27 DBs provided safety information about products or chemicals. The analysis highlights the lack of comprehensive or accessible data on chemicals in products and articles for most categories of products/articles and jurisdictions. The limitations of existing DBs were attributed to scattered regulatory information requirements, a lack of data for unregulated substances, the complexity of supply chain communication, and confidentiality issues. In response to these challenges, we identified opportunities for improving existing information transfer structures and exploring alternative data sources to promote product and article safety and circularity.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"55 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c07992","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Access to information about chemicals in products and articles is critical for supporting enforcement of chemical regulations, assessing risks from chemicals, allowing informed consumer choices, and enabling product circularity. In this work, we identified and evaluated available databases (DBs) on chemicals in products and articles from the literature using a defined protocol and from European national market surveillance authorities, nongovernmental agencies, and industrial sector groups using questionnaires. This is the first comprehensive review of DBs that provide information about chemicals in products and articles. A majority of these DBs are heterogeneous in terms of scope, ontologies, and data structures. Among the 57 identified DBs, 49 identified specific substances and only 30 reported their concentration in their products. In addition, 35 DBs included hazard information and 27 DBs provided safety information about products or chemicals. The analysis highlights the lack of comprehensive or accessible data on chemicals in products and articles for most categories of products/articles and jurisdictions. The limitations of existing DBs were attributed to scattered regulatory information requirements, a lack of data for unregulated substances, the complexity of supply chain communication, and confidentiality issues. In response to these challenges, we identified opportunities for improving existing information transfer structures and exploring alternative data sources to promote product and article safety and circularity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信