Targeting Soluble Amyloid Oligomers in Alzheimer's Disease: A Hypothetical Model Study Comparing Intrathecal Pseudodelivery of mAbs Against Intravenous Administration.

IF 2.9 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Manuel Menendez-Gonzalez
{"title":"Targeting Soluble Amyloid Oligomers in Alzheimer's Disease: A Hypothetical Model Study Comparing Intrathecal Pseudodelivery of mAbs Against Intravenous Administration.","authors":"Manuel Menendez-Gonzalez","doi":"10.3390/diseases13010017","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objective: </strong>Neurotoxic soluble amyloid-β (Aβ) oligomers are key drivers of Alzheimer's pathology, with evidence suggesting that early targeting of these soluble forms may slow disease progression. Traditional intravenous (IV) monoclonal antibodies (mAbs) face challenges, including limited brain penetration and risks such as amyloid-related imaging abnormalities (ARIA). This hypothetical study aimed to model amyloid dynamics in early-to-moderate Alzheimer's disease (AD) and compare the efficacy of IV mAn with intrathecal pseudodelivery, a novel method that confines mAbs in a subcutaneous reservoir for selective amyloid clearance in cerebrospinal fluid (CSF) without systemic exposure.</p><p><strong>Methods: </strong>A mathematical framework was employed to simulate Aβ dynamics in patients with early-to-moderate AD. Two therapeutic approaches were compared: IV mAb and intrathecal pseudodelivery of mAb. The model incorporated amyloid kinetics, mAb affinity, protofibril size, and therapy-induced clearance rates to evaluate the impact of both methods on amyloid reduction, PET negativity timelines, and the risk of ARIA.</p><p><strong>Results: </strong>Intrathecal pseudodelivery significantly accelerated Aβ clearance compared to IV administration, achieving amyloid PET scan negativity by month 132, as opposed to month 150 with IV mAb. This method demonstrated no ARIA risk and reduced amyloid reaccumulation. By targeting soluble Aβ species more effectively, intrathecal pseudodelivery emerged as a safer and more efficient strategy for early AD intervention.</p><p><strong>Conclusions: </strong>Intrathecal pseudodelivery offers a promising alternative to IV mAbs, overcoming challenges associated with blood-brain barrier penetration and systemic side effects. Further research should focus on optimizing this approach and exploring combination therapies to enhance clinical outcomes in AD.</p>","PeriodicalId":72832,"journal":{"name":"Diseases (Basel, Switzerland)","volume":"13 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764272/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diseases (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/diseases13010017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background/objective: Neurotoxic soluble amyloid-β (Aβ) oligomers are key drivers of Alzheimer's pathology, with evidence suggesting that early targeting of these soluble forms may slow disease progression. Traditional intravenous (IV) monoclonal antibodies (mAbs) face challenges, including limited brain penetration and risks such as amyloid-related imaging abnormalities (ARIA). This hypothetical study aimed to model amyloid dynamics in early-to-moderate Alzheimer's disease (AD) and compare the efficacy of IV mAn with intrathecal pseudodelivery, a novel method that confines mAbs in a subcutaneous reservoir for selective amyloid clearance in cerebrospinal fluid (CSF) without systemic exposure.

Methods: A mathematical framework was employed to simulate Aβ dynamics in patients with early-to-moderate AD. Two therapeutic approaches were compared: IV mAb and intrathecal pseudodelivery of mAb. The model incorporated amyloid kinetics, mAb affinity, protofibril size, and therapy-induced clearance rates to evaluate the impact of both methods on amyloid reduction, PET negativity timelines, and the risk of ARIA.

Results: Intrathecal pseudodelivery significantly accelerated Aβ clearance compared to IV administration, achieving amyloid PET scan negativity by month 132, as opposed to month 150 with IV mAb. This method demonstrated no ARIA risk and reduced amyloid reaccumulation. By targeting soluble Aβ species more effectively, intrathecal pseudodelivery emerged as a safer and more efficient strategy for early AD intervention.

Conclusions: Intrathecal pseudodelivery offers a promising alternative to IV mAbs, overcoming challenges associated with blood-brain barrier penetration and systemic side effects. Further research should focus on optimizing this approach and exploring combination therapies to enhance clinical outcomes in AD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信