Application of PS2M Aptamer as Receptor Layer for Electrochemical Detection of Lead Ions.

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL
Izabela Zaras, Olga Kujawa, Marcin Olszewski, Marta Jarczewska
{"title":"Application of PS2M Aptamer as Receptor Layer for Electrochemical Detection of Lead Ions.","authors":"Izabela Zaras, Olga Kujawa, Marcin Olszewski, Marta Jarczewska","doi":"10.3390/bios15010059","DOIUrl":null,"url":null,"abstract":"<p><p>Since lead can cause severe effects on living organisms' health and life, the regular monitoring of Pb levels in water and soil is of particular significance. Recently, it was shown that lead ions can also be detected using affinity-based biosensors, namely, using aptamers as recognition elements. In most cases, thrombin binding aptamer (TBA) was utilized; however, there are more examples of DNA aptamers which could also serve that purpose. Herein, we present studies on the electrochemical detection of lead ions using PS2M aptamer, which contains several guanine nucleotides, as the receptor element. Firstly, the method of aptamer-based layer fabrication was optimized along with the choice of a redox active indicator, which was a source of current signal. The experiments revealed the possibility of lead ion detection from 50 to 600 nM, which covers the range below and above the maximum accepted limit stated by US EPA (72 nM). Moreover, the sensing layer exhibited high selectivity towards lead ions and was successfully applied both for the analysis of tap water spiked with Pb<sup>2+</sup> ions and as a miniaturized sensor. Finally, stability and regeneration studies on the aptamer-based receptor layer were executed to confirm the utility of the elaborated tool.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764081/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15010059","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Since lead can cause severe effects on living organisms' health and life, the regular monitoring of Pb levels in water and soil is of particular significance. Recently, it was shown that lead ions can also be detected using affinity-based biosensors, namely, using aptamers as recognition elements. In most cases, thrombin binding aptamer (TBA) was utilized; however, there are more examples of DNA aptamers which could also serve that purpose. Herein, we present studies on the electrochemical detection of lead ions using PS2M aptamer, which contains several guanine nucleotides, as the receptor element. Firstly, the method of aptamer-based layer fabrication was optimized along with the choice of a redox active indicator, which was a source of current signal. The experiments revealed the possibility of lead ion detection from 50 to 600 nM, which covers the range below and above the maximum accepted limit stated by US EPA (72 nM). Moreover, the sensing layer exhibited high selectivity towards lead ions and was successfully applied both for the analysis of tap water spiked with Pb2+ ions and as a miniaturized sensor. Finally, stability and regeneration studies on the aptamer-based receptor layer were executed to confirm the utility of the elaborated tool.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信