A Microfluidic Paper-Based Device for Monitoring Urease Activity in Saliva.

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL
Francisca T S M Ferreira, António O S S Rangel, Raquel B R Mesquita
{"title":"A Microfluidic Paper-Based Device for Monitoring Urease Activity in Saliva.","authors":"Francisca T S M Ferreira, António O S S Rangel, Raquel B R Mesquita","doi":"10.3390/bios15010048","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic Kidney Disease (CKD) is a disorder that affects over 10% of the global population, and that would benefit from innovative methodologies that would provide early detection. Since it has been reported that there are high levels of urease in CKD patients' saliva, this sample is a promising non-invasive alternative to blood for CKD detection and monitoring. This work introduces a novel 3D µPAD for quantifying urease activity in saliva in a range of 0.041-0.750 U/mL, with limits of detection and quantification of 0.012 and 0.041 U/mL, respectively. The device uses the urease in the sample to convert urea into ammonia, causing a colorimetric change in the bromothymol blue. The accuracy of the developed device was evaluated by comparing the measurements of several saliva samples (#13) obtained with the μPAD and with a commercially available kit. Stability studies were also performed to assess its functionality as a point-of-care methodology, and the device was stable for 4 months when stored in a vacuum. After the sample placement, it could be scanned within 40 min without providing significantly different results. The developed device quantifies urease activity in saliva within 30 min, providing a simple, portable, lab-free alternative to existing methodologies.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763955/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15010048","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic Kidney Disease (CKD) is a disorder that affects over 10% of the global population, and that would benefit from innovative methodologies that would provide early detection. Since it has been reported that there are high levels of urease in CKD patients' saliva, this sample is a promising non-invasive alternative to blood for CKD detection and monitoring. This work introduces a novel 3D µPAD for quantifying urease activity in saliva in a range of 0.041-0.750 U/mL, with limits of detection and quantification of 0.012 and 0.041 U/mL, respectively. The device uses the urease in the sample to convert urea into ammonia, causing a colorimetric change in the bromothymol blue. The accuracy of the developed device was evaluated by comparing the measurements of several saliva samples (#13) obtained with the μPAD and with a commercially available kit. Stability studies were also performed to assess its functionality as a point-of-care methodology, and the device was stable for 4 months when stored in a vacuum. After the sample placement, it could be scanned within 40 min without providing significantly different results. The developed device quantifies urease activity in saliva within 30 min, providing a simple, portable, lab-free alternative to existing methodologies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信