A Diagnostic and Performance System for Soccer: Technical Design and Development.

IF 2.2 Q2 SPORT SCIENCES
Sports Pub Date : 2025-01-08 DOI:10.3390/sports13010010
Alberto Gascón, Álvaro Marco, David Buldain, Javier Alfaro-Santafé, Jose Victor Alfaro-Santafé, Antonio Gómez-Bernal, Roberto Casas
{"title":"A Diagnostic and Performance System for Soccer: Technical Design and Development.","authors":"Alberto Gascón, Álvaro Marco, David Buldain, Javier Alfaro-Santafé, Jose Victor Alfaro-Santafé, Antonio Gómez-Bernal, Roberto Casas","doi":"10.3390/sports13010010","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a novel system for diagnosing and evaluating soccer performance using wearable inertial sensors integrated into players' insoles. Designed to meet the needs of professional podiatrists and sports practitioners, the system focuses on three key soccer-related movements: passing, shooting, and changes of direction (CoDs). The system leverages low-power IMU sensors, Bluetooth Low Energy (BLE) communication, and a cloud-based architecture to enable real-time data analysis and performance feedback. Data were collected from nine professional players from the SD Huesca women's team during controlled tests, and bespoke algorithms were developed to process kinematic data for precise event detection. Results indicate high accuracy rates for detecting ball-striking events and CoDs, with improvements in algorithm performance achieved through adaptive thresholds and ensemble neural network models. Compared to existing systems, this approach significantly reduces costs and enhances practicality by minimizing the number of sensors required while ensuring real-time evaluation capabilities. However, the study is limited by a small sample size, which restricts generalizability. Future research will aim to expand the dataset, include diverse sports, and integrate additional sensors for broader applications. This system offers a valuable tool for injury prevention, player rehabilitation, and performance optimization in professional soccer, bridging technical advancements with practical applications in sports science.</p>","PeriodicalId":53303,"journal":{"name":"Sports","volume":"13 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768674/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sports13010010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel system for diagnosing and evaluating soccer performance using wearable inertial sensors integrated into players' insoles. Designed to meet the needs of professional podiatrists and sports practitioners, the system focuses on three key soccer-related movements: passing, shooting, and changes of direction (CoDs). The system leverages low-power IMU sensors, Bluetooth Low Energy (BLE) communication, and a cloud-based architecture to enable real-time data analysis and performance feedback. Data were collected from nine professional players from the SD Huesca women's team during controlled tests, and bespoke algorithms were developed to process kinematic data for precise event detection. Results indicate high accuracy rates for detecting ball-striking events and CoDs, with improvements in algorithm performance achieved through adaptive thresholds and ensemble neural network models. Compared to existing systems, this approach significantly reduces costs and enhances practicality by minimizing the number of sensors required while ensuring real-time evaluation capabilities. However, the study is limited by a small sample size, which restricts generalizability. Future research will aim to expand the dataset, include diverse sports, and integrate additional sensors for broader applications. This system offers a valuable tool for injury prevention, player rehabilitation, and performance optimization in professional soccer, bridging technical advancements with practical applications in sports science.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sports
Sports SPORT SCIENCES-
CiteScore
4.10
自引率
7.40%
发文量
167
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信