A Model H5N2 Vaccine Strain for Dual Protection Against H5N1 and H9N2 Avian Influenza Viruses.

IF 5.2 3区 医学 Q1 IMMUNOLOGY
Vaccines Pub Date : 2024-12-30 DOI:10.3390/vaccines13010022
Jin-Ha Song, Seung-Eun Son, Ho-Won Kim, Se-Hee An, Chung-Young Lee, Hyuk-Joon Kwon, Kang-Seuk Choi
{"title":"A Model H5N2 Vaccine Strain for Dual Protection Against H5N1 and H9N2 Avian Influenza Viruses.","authors":"Jin-Ha Song, Seung-Eun Son, Ho-Won Kim, Se-Hee An, Chung-Young Lee, Hyuk-Joon Kwon, Kang-Seuk Choi","doi":"10.3390/vaccines13010022","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objective:</b> Highly pathogenic (HP) H5Nx and low-pathogenicity (LP) H9N2 avian influenza viruses (AIVs) pose global threats to the poultry industry and public health, highlighting the critical need for a dual-protective vaccine. <b>Methods:</b> In this study, we generated a model PR8-derived recombinant H5N2 vaccine strain with hemagglutinin (HA) and neuraminidase (NA) genes from clade 2.3.2.1c H5N1 and Y439-like H9N2 viruses, respectively. To enhance the immunogenicity of the recombinant H5N2 vaccine strain, N-glycans of the HA2 subunit, NA, and M2e were modified. Additionally, we replaced M2e with avian M2e to enhance the antigenic homogeneity of AIVs for better protection. We also replaced PR8 PB2 with 01310 PB2, which is the PB2 gene derived from an LP H9N2 avian influenza virus, to eliminate pathogenicity in mammals. The productivity of the model vaccine strain (rvH5N2-aM2e-vPB2) in embryonated chicken eggs (ECEs), its potential risk of mammalian infection, and the immunogenicity associated with different inactivation methods (formaldehyde (F/A) vs. binary ethyleneimine (BEI)) were evaluated. <b>Results:</b> The rvH5N2-aM2e-vPB2 strain demonstrated high productivity in ECEs and exhibited complete inhibition of replication in mammalian cells. Furthermore, compared with using F/A inactivation, inactivation using BEI significantly enhanced the immune response, particularly against NA. This enhancement resulted in increased virus neutralization titers, supporting its efficacy for dual protection against H5Nx and H9N2 avian influenza viruses. Furthermore, we demonstrated that M2e-specific immune responses, difficult to induce with inactivated vaccines, can be effectively elicited with live vaccines, suggesting a strategy to enhance M2e immunogenicity in whole influenza virus vaccines. <b>Conclusions:</b> Finally, the successful development of the model rH5N2 vaccine strain is described; this strain provides dual protection, has potential applicability in regions where avian influenza is endemic, and can be used to promote the development of versatile H5N2 recombinant vaccines for effective avian influenza control.</p>","PeriodicalId":23634,"journal":{"name":"Vaccines","volume":"13 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768808/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/vaccines13010022","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/Objective: Highly pathogenic (HP) H5Nx and low-pathogenicity (LP) H9N2 avian influenza viruses (AIVs) pose global threats to the poultry industry and public health, highlighting the critical need for a dual-protective vaccine. Methods: In this study, we generated a model PR8-derived recombinant H5N2 vaccine strain with hemagglutinin (HA) and neuraminidase (NA) genes from clade 2.3.2.1c H5N1 and Y439-like H9N2 viruses, respectively. To enhance the immunogenicity of the recombinant H5N2 vaccine strain, N-glycans of the HA2 subunit, NA, and M2e were modified. Additionally, we replaced M2e with avian M2e to enhance the antigenic homogeneity of AIVs for better protection. We also replaced PR8 PB2 with 01310 PB2, which is the PB2 gene derived from an LP H9N2 avian influenza virus, to eliminate pathogenicity in mammals. The productivity of the model vaccine strain (rvH5N2-aM2e-vPB2) in embryonated chicken eggs (ECEs), its potential risk of mammalian infection, and the immunogenicity associated with different inactivation methods (formaldehyde (F/A) vs. binary ethyleneimine (BEI)) were evaluated. Results: The rvH5N2-aM2e-vPB2 strain demonstrated high productivity in ECEs and exhibited complete inhibition of replication in mammalian cells. Furthermore, compared with using F/A inactivation, inactivation using BEI significantly enhanced the immune response, particularly against NA. This enhancement resulted in increased virus neutralization titers, supporting its efficacy for dual protection against H5Nx and H9N2 avian influenza viruses. Furthermore, we demonstrated that M2e-specific immune responses, difficult to induce with inactivated vaccines, can be effectively elicited with live vaccines, suggesting a strategy to enhance M2e immunogenicity in whole influenza virus vaccines. Conclusions: Finally, the successful development of the model rH5N2 vaccine strain is described; this strain provides dual protection, has potential applicability in regions where avian influenza is endemic, and can be used to promote the development of versatile H5N2 recombinant vaccines for effective avian influenza control.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Vaccines
Vaccines Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
8.90
自引率
16.70%
发文量
1853
审稿时长
18.06 days
期刊介绍: Vaccines (ISSN 2076-393X) is an international, peer-reviewed open access journal focused on laboratory and clinical vaccine research, utilization and immunization. Vaccines publishes high quality reviews, regular research papers, communications and case reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信