Overestimated role of inoculation bacteria-algae ratio in wastewater treatment.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Huangbo Zhao, Xin Zhong, Zexin Yao, Zihua Yang, Jie Fan
{"title":"Overestimated role of inoculation bacteria-algae ratio in wastewater treatment.","authors":"Huangbo Zhao, Xin Zhong, Zexin Yao, Zihua Yang, Jie Fan","doi":"10.1002/wer.70016","DOIUrl":null,"url":null,"abstract":"<p><p>Microalgae-bacteria systems present a promising approach for CO<sub>2</sub> reduction in wastewater treatment. The effect of inoculation bacteria-algae ratio on performance was investigated in this study. Different inoculation ratios (bacteria: algae 1:2, 1:1, 1:0.5, 1:0.25, 1:0.125, w/w) obtained comparable nutrients removal (p > 0.05). Over time, the bacteria-algae ratios converged into two groups (3:1 and 4:1), demonstrating self-adaption between bacteria and microalgae. Furthermore, principal component analysis (PCA) distinguished the performance of reactors into two groups, one group consisting of 1:2, 1:1, and 1:0.5 ratios and the other group consisting of 1:0.25 and 1:0.125 ratios, confirming their convergence in terms of nutrient removal and photosynthetic properties. The performance differed merely in sludge volume index (SVI) and nitrite accumulation, with 1:2 and 1:0.125 being the most prone to accumulate nitrite. This study implies that photobioreactor performance was not sensitive to inoculation ratio, whose role was overestimated, since microalgae and bacteria self-assemble to form niches. PRACTITIONER POINTS: Effect of inoculation bacteria-algae ratio on performance was overestimated Photosynthesis and nutrients removal were grouped at different inoculation ratios Different ratio showed similar nutrients removal efficiency Self-adaption made ratios of 1:2, 1:1, 1:0.5 converge into 3:1.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"97 1","pages":"e70016"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.70016","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microalgae-bacteria systems present a promising approach for CO2 reduction in wastewater treatment. The effect of inoculation bacteria-algae ratio on performance was investigated in this study. Different inoculation ratios (bacteria: algae 1:2, 1:1, 1:0.5, 1:0.25, 1:0.125, w/w) obtained comparable nutrients removal (p > 0.05). Over time, the bacteria-algae ratios converged into two groups (3:1 and 4:1), demonstrating self-adaption between bacteria and microalgae. Furthermore, principal component analysis (PCA) distinguished the performance of reactors into two groups, one group consisting of 1:2, 1:1, and 1:0.5 ratios and the other group consisting of 1:0.25 and 1:0.125 ratios, confirming their convergence in terms of nutrient removal and photosynthetic properties. The performance differed merely in sludge volume index (SVI) and nitrite accumulation, with 1:2 and 1:0.125 being the most prone to accumulate nitrite. This study implies that photobioreactor performance was not sensitive to inoculation ratio, whose role was overestimated, since microalgae and bacteria self-assemble to form niches. PRACTITIONER POINTS: Effect of inoculation bacteria-algae ratio on performance was overestimated Photosynthesis and nutrients removal were grouped at different inoculation ratios Different ratio showed similar nutrients removal efficiency Self-adaption made ratios of 1:2, 1:1, 1:0.5 converge into 3:1.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Environment Research
Water Environment Research 环境科学-工程:环境
CiteScore
6.30
自引率
0.00%
发文量
138
审稿时长
11 months
期刊介绍: Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信