{"title":"Improved daily PM<sub>2.5</sub> estimates in India reveal inequalities in recent enhancement of air quality.","authors":"Ayako Kawano, Makoto Kelp, Minghao Qiu, Kirat Singh, Eeshan Chaturvedi, Sunil Dahiya, Inés Azevedo, Marshall Burke","doi":"10.1126/sciadv.adq1071","DOIUrl":null,"url":null,"abstract":"<p><p>Poor ambient air quality poses a substantial global health threat. However, accurate measurement remains challenging, particularly in countries such as India where ground monitors are scarce despite high expected exposure and health burdens. This lack of precise measurements impedes understanding of changes in pollution exposure over time and across populations. Here, we develop open-source daily fine particulate matter (PM<sub>2.5</sub>) datasets at a 10-kilometer resolution for India from 2005 to 2023 using a two-stage machine learning model validated on held-out monitor data. Analyzing long-term air quality trends, we find that PM<sub>2.5</sub> concentrations increased across most of the country until around 2016 and then declined partly due to favorable meteorology in southern India. Recent reductions in PM<sub>2.5</sub> were substantially larger in wealthier areas, highlighting the urgency of air quality control policies addressing all socioeconomic communities. To advance equitable air quality monitoring, we propose additional monitor locations in India and examine the adaptability of our method to other countries with scarce monitoring data.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 4","pages":"eadq1071"},"PeriodicalIF":11.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adq1071","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Poor ambient air quality poses a substantial global health threat. However, accurate measurement remains challenging, particularly in countries such as India where ground monitors are scarce despite high expected exposure and health burdens. This lack of precise measurements impedes understanding of changes in pollution exposure over time and across populations. Here, we develop open-source daily fine particulate matter (PM2.5) datasets at a 10-kilometer resolution for India from 2005 to 2023 using a two-stage machine learning model validated on held-out monitor data. Analyzing long-term air quality trends, we find that PM2.5 concentrations increased across most of the country until around 2016 and then declined partly due to favorable meteorology in southern India. Recent reductions in PM2.5 were substantially larger in wealthier areas, highlighting the urgency of air quality control policies addressing all socioeconomic communities. To advance equitable air quality monitoring, we propose additional monitor locations in India and examine the adaptability of our method to other countries with scarce monitoring data.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.