Optimization of Toxicity, Biodegradability, and Skin Irritation in Formulations Containing Mixtures of Anionic and Nonionic Surfactants Combined with Silica Nanoparticles.

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Toxics Pub Date : 2025-01-08 DOI:10.3390/toxics13010043
Manuela Lechuga, Mercedes Fernández-Serrano, Josefa Núñez-Olea, Juan Francisco Martínez-Gallegos, Francisco Ríos
{"title":"Optimization of Toxicity, Biodegradability, and Skin Irritation in Formulations Containing Mixtures of Anionic and Nonionic Surfactants Combined with Silica Nanoparticles.","authors":"Manuela Lechuga, Mercedes Fernández-Serrano, Josefa Núñez-Olea, Juan Francisco Martínez-Gallegos, Francisco Ríos","doi":"10.3390/toxics13010043","DOIUrl":null,"url":null,"abstract":"<p><p>Surfactants play a crucial role in various industrial applications, including detergents and personal care products. However, their widespread use raises concerns due to their potential environmental impact and health risks, particularly in aquatic ecosystems, where they can disrupt the balance of marine life and accumulate in water sources, posing challenges to sustainable development. This study investigates the environmental and health implications of anionic and nonionic surfactants, focusing on their toxicity, biodegradation, and skin irritation potential profiles, especially when combined with silica nanoparticles. Toxicity assessments were conducted using bacteria <i>Vibrio fischeri</i> for aquatic toxicity and <i>Lepidium sativum</i> seeds for terrestrial plant effects, revealing that individual surfactants like the anionic alkyl ether carboxylic acid EC-R<sub>12-14</sub>E<sub>3</sub> exhibit high toxicity levels, while the nonionic fatty-alcohol ethoxylate FAE-R<sub>12-14</sub>E<sub>11</sub> shows comparatively lower environmental impact. The toxicity of surfactant mixtures was analysed, revealing both antagonistic and synergistic effects depending on the surfactants used. The addition of silica nanoparticles generally mitigates the overall toxicity of surfactants, whether used individually or in mixtures. Biodegradation studies followed OECD 301E and 301F guidelines, indicating that individual surfactants generally meet or approach the mineralization threshold, whereas the addition of nanoparticles reduced biodegradation efficacy. Potential skin irritation was predicted through the zein number (ZN), finding that some surfactant combinations with silica nanoparticles reduce irritation levels, highlighting their potential for safer formulation in products that come into direct contact with the skin. Overall, the findings emphasize the need for careful selection of surfactant mixtures and nanoparticle integration to minimize environmental toxicity and potential skin irritation and increase their biodegradability.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768549/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13010043","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Surfactants play a crucial role in various industrial applications, including detergents and personal care products. However, their widespread use raises concerns due to their potential environmental impact and health risks, particularly in aquatic ecosystems, where they can disrupt the balance of marine life and accumulate in water sources, posing challenges to sustainable development. This study investigates the environmental and health implications of anionic and nonionic surfactants, focusing on their toxicity, biodegradation, and skin irritation potential profiles, especially when combined with silica nanoparticles. Toxicity assessments were conducted using bacteria Vibrio fischeri for aquatic toxicity and Lepidium sativum seeds for terrestrial plant effects, revealing that individual surfactants like the anionic alkyl ether carboxylic acid EC-R12-14E3 exhibit high toxicity levels, while the nonionic fatty-alcohol ethoxylate FAE-R12-14E11 shows comparatively lower environmental impact. The toxicity of surfactant mixtures was analysed, revealing both antagonistic and synergistic effects depending on the surfactants used. The addition of silica nanoparticles generally mitigates the overall toxicity of surfactants, whether used individually or in mixtures. Biodegradation studies followed OECD 301E and 301F guidelines, indicating that individual surfactants generally meet or approach the mineralization threshold, whereas the addition of nanoparticles reduced biodegradation efficacy. Potential skin irritation was predicted through the zein number (ZN), finding that some surfactant combinations with silica nanoparticles reduce irritation levels, highlighting their potential for safer formulation in products that come into direct contact with the skin. Overall, the findings emphasize the need for careful selection of surfactant mixtures and nanoparticle integration to minimize environmental toxicity and potential skin irritation and increase their biodegradability.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Toxics
Toxics Chemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍: Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信