A protocol for loading Calcein-AM into extracellular vesicles from mammalian cells for clear visualization with a fluorescence microscope coupled to a deconvolution system.
María-Angélica Calderón-Peláez, Jaime E Castellanos, Myriam L Velandia-Romero
{"title":"A protocol for loading Calcein-AM into extracellular vesicles from mammalian cells for clear visualization with a fluorescence microscope coupled to a deconvolution system.","authors":"María-Angélica Calderón-Peláez, Jaime E Castellanos, Myriam L Velandia-Romero","doi":"10.1371/journal.pone.0317689","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are membrane-bound structures produced and released into the extracellular space by all types of cells. Due to their characteristics, EVs play crucial roles in cellular communication and signaling, holding an immense potential as biomarkers and molecular transporters. Various methods have been developed to label and characterize EVs, however, visualizing EVs remains a process that requires highly specialized and expensive equipment, which is not always available in all the laboratories. In this study, we adapted a protocol originally designed for EVs analysis by flow cytometry using Calcein-AM, and convert it into a useful and effective tool for visualizing EVs by epifluorescence microscopy coupled with a deconvolution system. This approach can be very useful for basic EVs analyses, enabling researchers to verify their distribution and internalization across cells. Such insights can guide decisions on whether to advance to more detailed analysis using confocal microscopy or to perform additional assays.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 1","pages":"e0317689"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761115/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0317689","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Extracellular vesicles (EVs) are membrane-bound structures produced and released into the extracellular space by all types of cells. Due to their characteristics, EVs play crucial roles in cellular communication and signaling, holding an immense potential as biomarkers and molecular transporters. Various methods have been developed to label and characterize EVs, however, visualizing EVs remains a process that requires highly specialized and expensive equipment, which is not always available in all the laboratories. In this study, we adapted a protocol originally designed for EVs analysis by flow cytometry using Calcein-AM, and convert it into a useful and effective tool for visualizing EVs by epifluorescence microscopy coupled with a deconvolution system. This approach can be very useful for basic EVs analyses, enabling researchers to verify their distribution and internalization across cells. Such insights can guide decisions on whether to advance to more detailed analysis using confocal microscopy or to perform additional assays.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage