Solvent-modulated preparation of lead-free Cs3Bi2I9polycrystalline film for high-performance photodetectors.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yaoyao Song, Huiyin Zhang, Mengfan Liu, Yubo Wan, Hao Sun, Yang Cao
{"title":"Solvent-modulated preparation of lead-free Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>polycrystalline film for high-performance photodetectors.","authors":"Yaoyao Song, Huiyin Zhang, Mengfan Liu, Yubo Wan, Hao Sun, Yang Cao","doi":"10.1088/1361-6528/adae16","DOIUrl":null,"url":null,"abstract":"<p><p>Lead-free cesium bismuth iodide (Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>) perovskite exhibits extraordinary optoelectronic properties and attractive potential in various optoelectronic devices, especially the application for photodetectors (PDs). However, most Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>PDs demonstrated poor detection performance due to the difficulty in obtaining high-quality polycrystalline films. Therefore, it makes sense to modulate the preparation of high-quality Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>polycrystalline films and expand its applications. Here, a solvent-modulated method combining anti-solvent and precursor engineering has been developed to regulate the crystallization dynamics of Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>. Anti-solvent treatment is to suppress the asynchronous separation out of CsI and BiI<sub>3</sub>due to significant differences in solubility, promoting uniform nucleation and limiting flake-like growth. Precursor engineering is synchronously used to modulate the subsequent nucleation growth dynamics. Due to the synergistic modulation, smooth and compact Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>polycrystalline films with distinct grains and grain boundaries can be easily obtained. The as-prepared PD exhibits an excellent on/off ratio of 4.26 × 10<sup>5</sup>as well as the detectivity up to 6.49 × 10<sup>10</sup>Jones at zero bias. And, the Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>PD indicates excellent device stability, maintaining about 70% of the original performance after being stored for 400 h in the air without encapsulation.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adae16","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lead-free cesium bismuth iodide (Cs3Bi2I9) perovskite exhibits extraordinary optoelectronic properties and attractive potential in various optoelectronic devices, especially the application for photodetectors (PDs). However, most Cs3Bi2I9PDs demonstrated poor detection performance due to the difficulty in obtaining high-quality polycrystalline films. Therefore, it makes sense to modulate the preparation of high-quality Cs3Bi2I9polycrystalline films and expand its applications. Here, a solvent-modulated method combining anti-solvent and precursor engineering has been developed to regulate the crystallization dynamics of Cs3Bi2I9. Anti-solvent treatment is to suppress the asynchronous separation out of CsI and BiI3due to significant differences in solubility, promoting uniform nucleation and limiting flake-like growth. Precursor engineering is synchronously used to modulate the subsequent nucleation growth dynamics. Due to the synergistic modulation, smooth and compact Cs3Bi2I9polycrystalline films with distinct grains and grain boundaries can be easily obtained. The as-prepared PD exhibits an excellent on/off ratio of 4.26 × 105as well as the detectivity up to 6.49 × 1010Jones at zero bias. And, the Cs3Bi2I9PD indicates excellent device stability, maintaining about 70% of the original performance after being stored for 400 h in the air without encapsulation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信