Fan Zhuang, Xiaowu Xiang, Jin Hu, Jing Xiong, Teng Zhang, Lei Zhou, Guoping Jiang, Min Zhang, Zhenghua Liu, Huaqun Yin, Ling Xia, Ibrahim Ahmed Ibrahim Mahmoud, Delong Meng
{"title":"Behavior and Mechanisms of Antimony Precipitation from Wastewater by Sulfate-Reducing Bacteria <i>Desulfovibrio desulfuricans</i>.","authors":"Fan Zhuang, Xiaowu Xiang, Jin Hu, Jing Xiong, Teng Zhang, Lei Zhou, Guoping Jiang, Min Zhang, Zhenghua Liu, Huaqun Yin, Ling Xia, Ibrahim Ahmed Ibrahim Mahmoud, Delong Meng","doi":"10.3390/toxics13010017","DOIUrl":null,"url":null,"abstract":"<p><p>The development of the non-ferrous metal industry is generating increasingly large quantities of wastewater containing heavy metals (e.g., Sb). The precipitation of heavy metals by microorganisms involves complex mechanisms that require further investigation to optimize bioremediation technologies. In this study, we employed a sulfate-reducing bacteria (SRB) strain <i>Desulfovibrio desulfuricans</i> CSU_dl to treat the antimony (Sb)-containing wastewater; the behavior of Sb and mechanisms underlying precipitation were investigated by characterizing the precipitates. The results showed that the abiotic factors constraining SRB bacterial growth greatly affect Sb forms and precipitation. For instance, Sb precipitation maximumly occurred at pH 6 and 7, or C:N ratio of 10:1 and 40:3 for Sb(III) and Sb(V), respectively, resulting in a maximum Sb removal rate of 94%. Interestingly, we found that substantial antimonate and antimonite were adsorbed on the SRB cell surface, indicating that cell surface is a critical reaction site of Sb transformation and precipitation. Sb was adsorbed to the cell surface by C-C and C=O groups, and was further precipitated by forming Sb<sub>2</sub>S<sub>3</sub> and Sb<sub>2</sub>S<sub>5</sub> or was coprecipitated with the P-containing group. Partial Sb(V) reduction was also observed on the SRB cell surface. These results provided a deep insight into the Sb bio-transformation and were an advancement with respect to understanding bioremediation of Sb-contaminated wastewater.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768817/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13010017","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The development of the non-ferrous metal industry is generating increasingly large quantities of wastewater containing heavy metals (e.g., Sb). The precipitation of heavy metals by microorganisms involves complex mechanisms that require further investigation to optimize bioremediation technologies. In this study, we employed a sulfate-reducing bacteria (SRB) strain Desulfovibrio desulfuricans CSU_dl to treat the antimony (Sb)-containing wastewater; the behavior of Sb and mechanisms underlying precipitation were investigated by characterizing the precipitates. The results showed that the abiotic factors constraining SRB bacterial growth greatly affect Sb forms and precipitation. For instance, Sb precipitation maximumly occurred at pH 6 and 7, or C:N ratio of 10:1 and 40:3 for Sb(III) and Sb(V), respectively, resulting in a maximum Sb removal rate of 94%. Interestingly, we found that substantial antimonate and antimonite were adsorbed on the SRB cell surface, indicating that cell surface is a critical reaction site of Sb transformation and precipitation. Sb was adsorbed to the cell surface by C-C and C=O groups, and was further precipitated by forming Sb2S3 and Sb2S5 or was coprecipitated with the P-containing group. Partial Sb(V) reduction was also observed on the SRB cell surface. These results provided a deep insight into the Sb bio-transformation and were an advancement with respect to understanding bioremediation of Sb-contaminated wastewater.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.