{"title":"Osteopenia Metabolomic Biomarkers for Early Warning of Osteoporosis.","authors":"Jie Wang, Dandan Yan, Suna Wang, Aihua Zhao, Xuhong Hou, Xiaojiao Zheng, Jingyi Guo, Li Shen, Yuqian Bao, Wei Jia, Xiangtian Yu, Cheng Hu, Zhenlin Zhang","doi":"10.3390/metabo15010066","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction</b>: This study aimed to capture the early metabolic changes before osteoporosis occurs and identify metabolomic biomarkers at the osteopenia stage for the early prevention of osteoporosis. <b>Materials and Methods</b>: Metabolomic data were generated from normal, osteopenia, and osteoporosis groups with 320 participants recruited from the Nicheng community in Shanghai. We conducted individual edge network analysis (iENA) combined with a random forest to detect metabolomic biomarkers for the early warning of osteoporosis. Weighted Gene Co-Expression Network Analysis (WGCNA) and mediation analysis were used to explore the clinical impacts of metabolomic biomarkers. <b>Results</b>: Visual separations of the metabolic profiles were observed between three bone mineral density (BMD) groups in both genders. According to the iENA approach, several metabolites had significant abundance and association changes in osteopenia participants, confirming that osteopenia is a critical stage in the development of osteoporosis. Metabolites were further selected to identify osteopenia (nine metabolites in females; eight metabolites in males), and their ability to discriminate osteopenia was improved significantly compared to traditional bone turnover markers (BTMs) (female AUC = 0.717, 95% CI 0.547-0.882, versus BTMs: <i>p</i> = 0.036; male AUC = 0.801, 95% CI 0.636-0.966, versus BTMs: <i>p</i> = 0.007). The roles of the identified key metabolites were involved in the association between total fat-free mass (TFFM) and osteopenia in females. <b>Conclusion</b>: Osteopenia was identified as a tipping point during the development of osteoporosis with metabolomic characteristics. A few metabolites were identified as candidate early-warning biomarkers by machine learning analysis, which could indicate bone loss and provide new prevention guidance for osteoporosis.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767427/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15010066","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: This study aimed to capture the early metabolic changes before osteoporosis occurs and identify metabolomic biomarkers at the osteopenia stage for the early prevention of osteoporosis. Materials and Methods: Metabolomic data were generated from normal, osteopenia, and osteoporosis groups with 320 participants recruited from the Nicheng community in Shanghai. We conducted individual edge network analysis (iENA) combined with a random forest to detect metabolomic biomarkers for the early warning of osteoporosis. Weighted Gene Co-Expression Network Analysis (WGCNA) and mediation analysis were used to explore the clinical impacts of metabolomic biomarkers. Results: Visual separations of the metabolic profiles were observed between three bone mineral density (BMD) groups in both genders. According to the iENA approach, several metabolites had significant abundance and association changes in osteopenia participants, confirming that osteopenia is a critical stage in the development of osteoporosis. Metabolites were further selected to identify osteopenia (nine metabolites in females; eight metabolites in males), and their ability to discriminate osteopenia was improved significantly compared to traditional bone turnover markers (BTMs) (female AUC = 0.717, 95% CI 0.547-0.882, versus BTMs: p = 0.036; male AUC = 0.801, 95% CI 0.636-0.966, versus BTMs: p = 0.007). The roles of the identified key metabolites were involved in the association between total fat-free mass (TFFM) and osteopenia in females. Conclusion: Osteopenia was identified as a tipping point during the development of osteoporosis with metabolomic characteristics. A few metabolites were identified as candidate early-warning biomarkers by machine learning analysis, which could indicate bone loss and provide new prevention guidance for osteoporosis.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.