Daniele R Pereira, Yunys Pérez-Betancourt, Bianca C L F Távora, Geraldo S Magalhães, Ana Maria Carmona-Ribeiro, Eliana L Faquim-Mauro
{"title":"The Role of Dendritic Cells in Adaptive Immune Response Induced by OVA/PDDA Nanoparticles.","authors":"Daniele R Pereira, Yunys Pérez-Betancourt, Bianca C L F Távora, Geraldo S Magalhães, Ana Maria Carmona-Ribeiro, Eliana L Faquim-Mauro","doi":"10.3390/vaccines13010076","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objective</b>: Cationic polymers were shown to assemble with negatively charged proteins yielding nanoparticles (NPs). Poly-diallyl-dimethyl-ammonium chloride (PDDA) combined with ovalbumin (OVA) yielded a stable colloidal dispersion (OVA/PDDA-NPs) eliciting significant anti-OVA immune response. Dendritic cells (DCs), as sentinels of foreign antigens, exert a crucial role in the antigen-specific immune response. Here, we aimed to evaluate the involvement of DCs in the immune response induced by OVA/PDDA. <b>Methods</b>: In vivo experiments were used to assess the ability of OVA/PDDA-NPs to induce anti-OVA antibodies by ELISA, as well as plasma cells and memory B cells using flow cytometry. Additionally, DC migration to draining lymph nodes following OVA/PDDA-NP immunization was evaluated by flow cytometry. In vitro experiments using bone marrow-derived DCs (BM-DCs) were used to analyze the binding and uptake of OVA/PDDA-NPs, DC maturation status, and their antigen-presenting capacity. <b>Results:</b> Our data confirmed the potent effect of OVA/PDDA-NPs inducing anti-OVA IgG1 and IgG2a antibodies with increased CD19<sup>+</sup>CD138<sup>+</sup> plasma cells and CD19<sup>+</sup>CD38<sup>+</sup>CD27<sup>+</sup> memory cells in immunized mice. OVA/PDDA-NPs induced DC maturation and migration to draining lymph nodes. The in vitro results showed higher binding and the uptake of OVA/PDDA-NPs by BM-DCs. In addition, the NPs were able to induce the upregulation of costimulatory and MHC-II molecules on DCs, as well as TNF-α and IL-12 production. Higher OVA-specific T cell proliferation was promoted by BM-DCs incubated with OVA/PDDA-NPs. <b>Conclusions</b>: The data showed the central role of DCs in the induction of antigen-specific immune response by OVA-PDDA-NPs, thus proving that these NPs are a potent adjuvant for subunit vaccine design.</p>","PeriodicalId":23634,"journal":{"name":"Vaccines","volume":"13 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769024/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/vaccines13010076","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objective: Cationic polymers were shown to assemble with negatively charged proteins yielding nanoparticles (NPs). Poly-diallyl-dimethyl-ammonium chloride (PDDA) combined with ovalbumin (OVA) yielded a stable colloidal dispersion (OVA/PDDA-NPs) eliciting significant anti-OVA immune response. Dendritic cells (DCs), as sentinels of foreign antigens, exert a crucial role in the antigen-specific immune response. Here, we aimed to evaluate the involvement of DCs in the immune response induced by OVA/PDDA. Methods: In vivo experiments were used to assess the ability of OVA/PDDA-NPs to induce anti-OVA antibodies by ELISA, as well as plasma cells and memory B cells using flow cytometry. Additionally, DC migration to draining lymph nodes following OVA/PDDA-NP immunization was evaluated by flow cytometry. In vitro experiments using bone marrow-derived DCs (BM-DCs) were used to analyze the binding and uptake of OVA/PDDA-NPs, DC maturation status, and their antigen-presenting capacity. Results: Our data confirmed the potent effect of OVA/PDDA-NPs inducing anti-OVA IgG1 and IgG2a antibodies with increased CD19+CD138+ plasma cells and CD19+CD38+CD27+ memory cells in immunized mice. OVA/PDDA-NPs induced DC maturation and migration to draining lymph nodes. The in vitro results showed higher binding and the uptake of OVA/PDDA-NPs by BM-DCs. In addition, the NPs were able to induce the upregulation of costimulatory and MHC-II molecules on DCs, as well as TNF-α and IL-12 production. Higher OVA-specific T cell proliferation was promoted by BM-DCs incubated with OVA/PDDA-NPs. Conclusions: The data showed the central role of DCs in the induction of antigen-specific immune response by OVA-PDDA-NPs, thus proving that these NPs are a potent adjuvant for subunit vaccine design.
VaccinesPharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
8.90
自引率
16.70%
发文量
1853
审稿时长
18.06 days
期刊介绍:
Vaccines (ISSN 2076-393X) is an international, peer-reviewed open access journal focused on laboratory and clinical vaccine research, utilization and immunization. Vaccines publishes high quality reviews, regular research papers, communications and case reports.