{"title":"Volatile Organic Metabolites as Potential Biomarkers for Genitourinary Cancers: Review of the Applications and Detection Methods.","authors":"Kiana L Holbrook, Wen-Yee Lee","doi":"10.3390/metabo15010037","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is one of the leading causes of death globally, and is ranked second in the United States. Early detection is crucial for more effective treatment and a higher chance of survival rates, reducing burdens on individuals and societies. Genitourinary cancers, in particular, face significant challenges in early detection. Finding new and cost-effective diagnostic methods is of clinical need. Metabolomic-based approaches, notably volatile organic compound (VOC) analysis, have shown promise in detecting cancer. VOCs are small organic metabolites involved in biological processes and disease development. They can be detected in urine, breath, and blood samples, making them potential candidates for sensitive and non-invasive alternatives for early cancer detection. However, developing robust VOC detection methods remains a hurdle. This review outlines the current landscape of major genitourinary cancers (kidney, prostate, bladder, and testicular), including epidemiology, risk factors, and current diagnostic tools. Furthermore, it explores the applications of using VOCs as cancer biomarkers, various analytical techniques, and comparisons of extraction and detection methods across different biospecimens. The potential use of VOCs in detection, monitoring disease progression, and treatment responses in the field of genitourinary oncology is examined.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767221/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15010037","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer is one of the leading causes of death globally, and is ranked second in the United States. Early detection is crucial for more effective treatment and a higher chance of survival rates, reducing burdens on individuals and societies. Genitourinary cancers, in particular, face significant challenges in early detection. Finding new and cost-effective diagnostic methods is of clinical need. Metabolomic-based approaches, notably volatile organic compound (VOC) analysis, have shown promise in detecting cancer. VOCs are small organic metabolites involved in biological processes and disease development. They can be detected in urine, breath, and blood samples, making them potential candidates for sensitive and non-invasive alternatives for early cancer detection. However, developing robust VOC detection methods remains a hurdle. This review outlines the current landscape of major genitourinary cancers (kidney, prostate, bladder, and testicular), including epidemiology, risk factors, and current diagnostic tools. Furthermore, it explores the applications of using VOCs as cancer biomarkers, various analytical techniques, and comparisons of extraction and detection methods across different biospecimens. The potential use of VOCs in detection, monitoring disease progression, and treatment responses in the field of genitourinary oncology is examined.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.