Exploring the Structural Diversity and Biotechnological Potential of the Rhodophyte Phycolectome.

IF 4.9 2区 医学 Q1 CHEMISTRY, MEDICINAL
Marine Drugs Pub Date : 2024-12-26 DOI:10.3390/md23010008
Éllen F Rodrigues, Flavia Alves Verza, Felipe Garcia Nishimura, Renê Oliveira Beleboni, Cedric Hermans, Kaat Janssens, Maarten Lieven De Mol, Paco Hulpiau, Mozart Marins
{"title":"Exploring the Structural Diversity and Biotechnological Potential of the Rhodophyte Phycolectome.","authors":"Éllen F Rodrigues, Flavia Alves Verza, Felipe Garcia Nishimura, Renê Oliveira Beleboni, Cedric Hermans, Kaat Janssens, Maarten Lieven De Mol, Paco Hulpiau, Mozart Marins","doi":"10.3390/md23010008","DOIUrl":null,"url":null,"abstract":"<p><p>Lectins are non-covalent glycan-binding proteins found in all living organisms, binding specifically to carbohydrates through glycan-binding domains. Lectins have various biological functions, including cell signaling, molecular recognition, and innate immune responses, which play multiple roles in the physiological and developmental processes of organisms. Moreover, their diversity enables biotechnological exploration as biomarkers, biosensors, drug-delivery platforms, and lead molecules for anticancer, antidiabetic, and antimicrobial drugs. Lectins from Rhodophytes (red seaweed) have been extensively reported and characterized for their unique molecular structures, carbohydrate-binding specificities, and important biological activities. The increasing number of sequenced Rhodophyte genomes offers the opportunity to further study this rich source of lectins, potentially uncovering new ones with properties significantly different from their terrestrial plant counterparts, thus opening new biotechnological applications. We compiled literature data and conducted an in-depth analysis of the phycolectomes from all Rhodophyta genomes available in NCBI datasets. Using Hidden Markov Models capable of identifying lectin-type domains, we found at least six different types of lectin domains present in Rhodophytes, demonstrating their potential in identifying new lectins. This review integrates a computational analysis of the Rhodophyte phycolectome with existing information on red algae lectins and their biotechnological potential.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766507/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23010008","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lectins are non-covalent glycan-binding proteins found in all living organisms, binding specifically to carbohydrates through glycan-binding domains. Lectins have various biological functions, including cell signaling, molecular recognition, and innate immune responses, which play multiple roles in the physiological and developmental processes of organisms. Moreover, their diversity enables biotechnological exploration as biomarkers, biosensors, drug-delivery platforms, and lead molecules for anticancer, antidiabetic, and antimicrobial drugs. Lectins from Rhodophytes (red seaweed) have been extensively reported and characterized for their unique molecular structures, carbohydrate-binding specificities, and important biological activities. The increasing number of sequenced Rhodophyte genomes offers the opportunity to further study this rich source of lectins, potentially uncovering new ones with properties significantly different from their terrestrial plant counterparts, thus opening new biotechnological applications. We compiled literature data and conducted an in-depth analysis of the phycolectomes from all Rhodophyta genomes available in NCBI datasets. Using Hidden Markov Models capable of identifying lectin-type domains, we found at least six different types of lectin domains present in Rhodophytes, demonstrating their potential in identifying new lectins. This review integrates a computational analysis of the Rhodophyte phycolectome with existing information on red algae lectins and their biotechnological potential.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Drugs
Marine Drugs 医学-医药化学
CiteScore
9.60
自引率
14.80%
发文量
671
审稿时长
1 months
期刊介绍: Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信