A Novel Sesterterpenoid, Petrosaspongin and γ-Lactone Sesterterpenoids with Leishmanicidal Activity from Okinawan Marine Invertebrates.

IF 4.9 2区 医学 Q1 CHEMISTRY, MEDICINAL
Marine Drugs Pub Date : 2024-12-30 DOI:10.3390/md23010016
Takahiro Jomori, Nanami Higa, Shogo Hokama, Trianda Ayuning Tyas, Natsuki Matsuura, Yudai Ueda, Ryo Kimura, Sei Arizono, Nicole Joy de Voogd, Yasuhiro Hayashi, Mina Yasumoto-Hirose, Junichi Tanaka, Kanami Mori-Yasumoto
{"title":"A Novel Sesterterpenoid, Petrosaspongin and γ-Lactone Sesterterpenoids with Leishmanicidal Activity from Okinawan Marine Invertebrates.","authors":"Takahiro Jomori, Nanami Higa, Shogo Hokama, Trianda Ayuning Tyas, Natsuki Matsuura, Yudai Ueda, Ryo Kimura, Sei Arizono, Nicole Joy de Voogd, Yasuhiro Hayashi, Mina Yasumoto-Hirose, Junichi Tanaka, Kanami Mori-Yasumoto","doi":"10.3390/md23010016","DOIUrl":null,"url":null,"abstract":"<p><p>Leishmaniasis is a major public health problem, especially affecting vulnerable populations in tropical and subtropical regions. The disease is endemic in 90 countries, and with millions of people at risk, it is seen as one of the ten most neglected tropical diseases. Current treatments face challenges such as high toxicity, side effects, cost, and growing drug resistance. There is an urgent need for safer, affordable treatments, especially for cutaneous leishmaniasis (CL), the most common form. Marine invertebrates have long been resources for discovering bioactive compounds such as sesterterpenoids. Using bioassay-guided fractionations against cutaneous-type leishmaniasis promastigotes, we identified a novel furanosesterterpenoid, petrosaspongin from Okinawan marine sponges and a nudibranch, along with eight known sesterterpenoids, hippospongins and manoalides. The elucidated structure of petrosaspongin features a β-substituted furane ring, a tetronic acid, and a conjugated triene. The sesterterpenoids with a γ-butenolide group exhibited leishmanicidal activity against <i>Leishmania major</i> promastigotes, with IC<sub>50</sub> values ranging from 0.69 to 53 μM. The structure-activity relationship and molecular docking simulation suggest that γ-lactone is a key functional group for leishmanicidal activity. These findings contribute to the ongoing search for more effective treatments against CL.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766837/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23010016","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Leishmaniasis is a major public health problem, especially affecting vulnerable populations in tropical and subtropical regions. The disease is endemic in 90 countries, and with millions of people at risk, it is seen as one of the ten most neglected tropical diseases. Current treatments face challenges such as high toxicity, side effects, cost, and growing drug resistance. There is an urgent need for safer, affordable treatments, especially for cutaneous leishmaniasis (CL), the most common form. Marine invertebrates have long been resources for discovering bioactive compounds such as sesterterpenoids. Using bioassay-guided fractionations against cutaneous-type leishmaniasis promastigotes, we identified a novel furanosesterterpenoid, petrosaspongin from Okinawan marine sponges and a nudibranch, along with eight known sesterterpenoids, hippospongins and manoalides. The elucidated structure of petrosaspongin features a β-substituted furane ring, a tetronic acid, and a conjugated triene. The sesterterpenoids with a γ-butenolide group exhibited leishmanicidal activity against Leishmania major promastigotes, with IC50 values ranging from 0.69 to 53 μM. The structure-activity relationship and molecular docking simulation suggest that γ-lactone is a key functional group for leishmanicidal activity. These findings contribute to the ongoing search for more effective treatments against CL.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Drugs
Marine Drugs 医学-医药化学
CiteScore
9.60
自引率
14.80%
发文量
671
审稿时长
1 months
期刊介绍: Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信