Simulation of a Reverse Electrodialysis-Absorption Refrigeration Integration System for the Efficient Recovery of Low-Grade Waste Heat.

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL
Xi Wu, Linjing Yan, Xiaojing Zhu, Mingjun Liu
{"title":"Simulation of a Reverse Electrodialysis-Absorption Refrigeration Integration System for the Efficient Recovery of Low-Grade Waste Heat.","authors":"Xi Wu, Linjing Yan, Xiaojing Zhu, Mingjun Liu","doi":"10.3390/membranes15010002","DOIUrl":null,"url":null,"abstract":"<p><p>The absorption refrigeration system (ARS) stands as a remarkable device that is capable of efficiently harnessing low-grade thermal energy and converting it into cooling capacity. The reverse electrodialysis (RED) system harvests the salinity gradient energy embedded in two solutions of different concentrations into electricity. An innovative RED-ARS integration system is proposed that outputs cooling capacity and electric energy, driven by waste heat. In this study, a comprehensive mathematical simulation model of a RED-ARS integration system was established, and an aqueous lithium bromide solution was selected as the working solution. Based on this model, the authors simulated and analyzed the impact of various factors on system performance, including the heat source temperature (90 °C to 130 °C), concentrated solution concentration (3 mol∙L⁻<sup>1</sup> to 9 mol∙L⁻<sup>1</sup>), dilute solution concentration (0.002 mol∙L⁻<sup>1</sup> to 0.5 mol∙L⁻<sup>1</sup>), condensing temperature of the dilute solution (50 °C to 70 °C), solution temperature (30 °C to 60 °C) and flow rate (0.4 cm∙s⁻<sup>1</sup> to 1.3 cm∙s⁻<sup>1</sup>) in the RED stacks, as well as the number of RED stacks. The findings revealed the maximum output power of 934 W, a coefficient of performance (COP) of 0.75, and overall energy efficiency of 33%.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766999/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15010002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The absorption refrigeration system (ARS) stands as a remarkable device that is capable of efficiently harnessing low-grade thermal energy and converting it into cooling capacity. The reverse electrodialysis (RED) system harvests the salinity gradient energy embedded in two solutions of different concentrations into electricity. An innovative RED-ARS integration system is proposed that outputs cooling capacity and electric energy, driven by waste heat. In this study, a comprehensive mathematical simulation model of a RED-ARS integration system was established, and an aqueous lithium bromide solution was selected as the working solution. Based on this model, the authors simulated and analyzed the impact of various factors on system performance, including the heat source temperature (90 °C to 130 °C), concentrated solution concentration (3 mol∙L⁻1 to 9 mol∙L⁻1), dilute solution concentration (0.002 mol∙L⁻1 to 0.5 mol∙L⁻1), condensing temperature of the dilute solution (50 °C to 70 °C), solution temperature (30 °C to 60 °C) and flow rate (0.4 cm∙s⁻1 to 1.3 cm∙s⁻1) in the RED stacks, as well as the number of RED stacks. The findings revealed the maximum output power of 934 W, a coefficient of performance (COP) of 0.75, and overall energy efficiency of 33%.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信