Carbon Nanofiber-Reinforced Carbon Black Support for Enhancing the Durability of Catalysts Used in Proton Exchange Membrane Fuel Cells Against Carbon Corrosion.
Minki Sung, Hyeonseok Yi, Jimin Han, Jong Beom Lee, Seong-Ho Yoon, Joo-Il Park
{"title":"Carbon Nanofiber-Reinforced Carbon Black Support for Enhancing the Durability of Catalysts Used in Proton Exchange Membrane Fuel Cells Against Carbon Corrosion.","authors":"Minki Sung, Hyeonseok Yi, Jimin Han, Jong Beom Lee, Seong-Ho Yoon, Joo-Il Park","doi":"10.3390/membranes15010003","DOIUrl":null,"url":null,"abstract":"<p><p>This study addresses the critical challenge of carbon corrosion in proton exchange membrane fuel cells (PEMFCs) by developing hybrid supports that combine the high surface area of carbon black (CB) with the superior crystallinity and graphitic structure of carbon nanofibers (CNFs). Two commercially available CB samples were physically activated and composited with two types of CNFs synthesized via chemical vapor deposition using different carbon sources. The structure, morphology, and crystallinity of the resulting CNF-CB hybrid supports were characterized, and the performances of these hybrid supports in mitigating carbon corrosion and enhancing the PEMFC performance was evaluated through full-cell testing in collaboration with a membrane electrode assembly (MEA) manufacturer (VinaTech, Seoul, Republic, of Korea), adhering to industry-standard fabrication and evaluation procedures. Accelerated stress tests following the US Department of Energy protocols revealed that incorporating CNFs enhanced the durability of the CB-based hybrid supports without compromising their performance. The improved performance of the MEAs with the hybrid carbon support is attributed to the ability of the CNF to act as a structural backbone, facilitate water removal, and provide abundant edge plane sites for anchoring the platinum catalyst, which promoted the oxygen reduction reaction and improved catalyst utilization. The findings of this study highlight the potential of CNF-reinforced CB supports for enhancing the durability and performance of PEMFCs.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767076/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15010003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses the critical challenge of carbon corrosion in proton exchange membrane fuel cells (PEMFCs) by developing hybrid supports that combine the high surface area of carbon black (CB) with the superior crystallinity and graphitic structure of carbon nanofibers (CNFs). Two commercially available CB samples were physically activated and composited with two types of CNFs synthesized via chemical vapor deposition using different carbon sources. The structure, morphology, and crystallinity of the resulting CNF-CB hybrid supports were characterized, and the performances of these hybrid supports in mitigating carbon corrosion and enhancing the PEMFC performance was evaluated through full-cell testing in collaboration with a membrane electrode assembly (MEA) manufacturer (VinaTech, Seoul, Republic, of Korea), adhering to industry-standard fabrication and evaluation procedures. Accelerated stress tests following the US Department of Energy protocols revealed that incorporating CNFs enhanced the durability of the CB-based hybrid supports without compromising their performance. The improved performance of the MEAs with the hybrid carbon support is attributed to the ability of the CNF to act as a structural backbone, facilitate water removal, and provide abundant edge plane sites for anchoring the platinum catalyst, which promoted the oxygen reduction reaction and improved catalyst utilization. The findings of this study highlight the potential of CNF-reinforced CB supports for enhancing the durability and performance of PEMFCs.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.