ZIF-8-Embedded Cation-Exchange Membranes with Improved Monovalent Ion Selectivity for Capacitive Deionization.

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL
Eui-Gyu Han, Ji-Hyeon Lee, Moon-Sung Kang
{"title":"ZIF-8-Embedded Cation-Exchange Membranes with Improved Monovalent Ion Selectivity for Capacitive Deionization.","authors":"Eui-Gyu Han, Ji-Hyeon Lee, Moon-Sung Kang","doi":"10.3390/membranes15010019","DOIUrl":null,"url":null,"abstract":"<p><p>Membrane capacitive deionization (MCDI) is an electrochemical ion separation process that combines ion-exchange membranes (IEMs) with porous carbon electrodes to enhance desalination efficiency and address the limitations of conventional capacitive deionization (CDI). In this study, a cation-exchange membrane (CEM) embedded with a metal-organic framework (MOF) was developed to effectively separate monovalent and multivalent cations in influent solutions via MCDI. To fabricate CEMs with high monovalent ion selectivity, ZIF-8 was incorporated into sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) at various weight ratios. The resulting membranes were systematically characterized using diverse electrochemical methods. The ZIF-8-embedded CEMs demonstrated a sieving effect based on differences in ion size and hydration energy, achieving excellent permselectivity for monovalent ions. MCDI tests using the prepared CEMs showed a Na<sup>+</sup> ion removal rate exceeding 99% in Na<sup>+</sup>/Mg<sup>2+</sup> and Na<sup>+</sup>/Ca<sup>2+</sup> mixed feed solutions, outperforming a commercial membrane (CSE, Astom Corp., Tokyo, Japan), which achieved a removal rate of 94.1%. These findings are expected to provide valuable insights for advancing not only MCDI but also other electro-membrane processes capable of selectively separating specific ions.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766747/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15010019","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Membrane capacitive deionization (MCDI) is an electrochemical ion separation process that combines ion-exchange membranes (IEMs) with porous carbon electrodes to enhance desalination efficiency and address the limitations of conventional capacitive deionization (CDI). In this study, a cation-exchange membrane (CEM) embedded with a metal-organic framework (MOF) was developed to effectively separate monovalent and multivalent cations in influent solutions via MCDI. To fabricate CEMs with high monovalent ion selectivity, ZIF-8 was incorporated into sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) at various weight ratios. The resulting membranes were systematically characterized using diverse electrochemical methods. The ZIF-8-embedded CEMs demonstrated a sieving effect based on differences in ion size and hydration energy, achieving excellent permselectivity for monovalent ions. MCDI tests using the prepared CEMs showed a Na+ ion removal rate exceeding 99% in Na+/Mg2+ and Na+/Ca2+ mixed feed solutions, outperforming a commercial membrane (CSE, Astom Corp., Tokyo, Japan), which achieved a removal rate of 94.1%. These findings are expected to provide valuable insights for advancing not only MCDI but also other electro-membrane processes capable of selectively separating specific ions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信