Factoring fu Variability Into Estimates of Unbound Drug Concentrations Negatively Biases the MIC Versus % Probability of Target Attainment Relationship of Antimicrobial Agents.
Marilyn N Martinez, Mark G Papich, Pierre-Louis Toutain
{"title":"Factoring fu Variability Into Estimates of Unbound Drug Concentrations Negatively Biases the MIC Versus % Probability of Target Attainment Relationship of Antimicrobial Agents.","authors":"Marilyn N Martinez, Mark G Papich, Pierre-Louis Toutain","doi":"10.1111/jvp.13498","DOIUrl":null,"url":null,"abstract":"<p><p>The clinical breakpoint for a drug-pathogen combination reflects the drug susceptibility of the pathogen wild-type population, the location of the infection, the integrity of the host immune response, and the drug-pathogen pharmacokinetic (PK)/pharmacodynamic (PD) relationship. That PK/PD relationship, along with the population variability in drug exposure, is used to determine the probability of target attainment (PTA) of the PK/PD index at a specified minimum inhibitory concentration (MIC) for a selected target value. The PTA is used to identify the pharmacodynamic cutoff value (CO<sub>PD</sub>), which is one of the three components used to establish the clinical breakpoint. A challenge encountered when defining the CO<sub>PD</sub> is that the available PK information typically reflects total (free plus protein-bound) plasma concentrations. However, it is the unbound drug concentrations that exert the therapeutic effects and how the population fraction unbound (fu) incorporated into the CO<sub>PD</sub> assessments can markedly influence the CO<sub>PD</sub>. Factors examined included the estimated population fu mean (risk of bias) and the incorporation of estimated fu population variability into the Monte Carlo simulations when converting total to unbound plasma concentrations (risk of inflating variability). In this in silico study, the drug fu, systemic clearance, and the variability of both were altered so that the relative impact of each could be explored. We demonstrate that incorporating fu variability into the estimation of fAUCback can bias the CO<sub>PD</sub> assessment and that the magnitude of bias reflects the relative variability in systemic clearance and fu.</p>","PeriodicalId":17596,"journal":{"name":"Journal of veterinary pharmacology and therapeutics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of veterinary pharmacology and therapeutics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/jvp.13498","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The clinical breakpoint for a drug-pathogen combination reflects the drug susceptibility of the pathogen wild-type population, the location of the infection, the integrity of the host immune response, and the drug-pathogen pharmacokinetic (PK)/pharmacodynamic (PD) relationship. That PK/PD relationship, along with the population variability in drug exposure, is used to determine the probability of target attainment (PTA) of the PK/PD index at a specified minimum inhibitory concentration (MIC) for a selected target value. The PTA is used to identify the pharmacodynamic cutoff value (COPD), which is one of the three components used to establish the clinical breakpoint. A challenge encountered when defining the COPD is that the available PK information typically reflects total (free plus protein-bound) plasma concentrations. However, it is the unbound drug concentrations that exert the therapeutic effects and how the population fraction unbound (fu) incorporated into the COPD assessments can markedly influence the COPD. Factors examined included the estimated population fu mean (risk of bias) and the incorporation of estimated fu population variability into the Monte Carlo simulations when converting total to unbound plasma concentrations (risk of inflating variability). In this in silico study, the drug fu, systemic clearance, and the variability of both were altered so that the relative impact of each could be explored. We demonstrate that incorporating fu variability into the estimation of fAUCback can bias the COPD assessment and that the magnitude of bias reflects the relative variability in systemic clearance and fu.
期刊介绍:
The Journal of Veterinary Pharmacology and Therapeutics (JVPT) is an international journal devoted to the publication of scientific papers in the basic and clinical aspects of veterinary pharmacology and toxicology, whether the study is in vitro, in vivo, ex vivo or in silico. The Journal is a forum for recent scientific information and developments in the discipline of veterinary pharmacology, including toxicology and therapeutics. Studies that are entirely in vitro will not be considered within the scope of JVPT unless the study has direct relevance to the use of the drug (including toxicants and feed additives) in veterinary species, or that it can be clearly demonstrated that a similar outcome would be expected in vivo. These studies should consider approved or widely used veterinary drugs and/or drugs with broad applicability to veterinary species.