Factoring fu Variability Into Estimates of Unbound Drug Concentrations Negatively Biases the MIC Versus % Probability of Target Attainment Relationship of Antimicrobial Agents.

IF 1.5 4区 农林科学 Q3 PHARMACOLOGY & PHARMACY
Marilyn N Martinez, Mark G Papich, Pierre-Louis Toutain
{"title":"Factoring fu Variability Into Estimates of Unbound Drug Concentrations Negatively Biases the MIC Versus % Probability of Target Attainment Relationship of Antimicrobial Agents.","authors":"Marilyn N Martinez, Mark G Papich, Pierre-Louis Toutain","doi":"10.1111/jvp.13498","DOIUrl":null,"url":null,"abstract":"<p><p>The clinical breakpoint for a drug-pathogen combination reflects the drug susceptibility of the pathogen wild-type population, the location of the infection, the integrity of the host immune response, and the drug-pathogen pharmacokinetic (PK)/pharmacodynamic (PD) relationship. That PK/PD relationship, along with the population variability in drug exposure, is used to determine the probability of target attainment (PTA) of the PK/PD index at a specified minimum inhibitory concentration (MIC) for a selected target value. The PTA is used to identify the pharmacodynamic cutoff value (CO<sub>PD</sub>), which is one of the three components used to establish the clinical breakpoint. A challenge encountered when defining the CO<sub>PD</sub> is that the available PK information typically reflects total (free plus protein-bound) plasma concentrations. However, it is the unbound drug concentrations that exert the therapeutic effects and how the population fraction unbound (fu) incorporated into the CO<sub>PD</sub> assessments can markedly influence the CO<sub>PD</sub>. Factors examined included the estimated population fu mean (risk of bias) and the incorporation of estimated fu population variability into the Monte Carlo simulations when converting total to unbound plasma concentrations (risk of inflating variability). In this in silico study, the drug fu, systemic clearance, and the variability of both were altered so that the relative impact of each could be explored. We demonstrate that incorporating fu variability into the estimation of fAUCback can bias the CO<sub>PD</sub> assessment and that the magnitude of bias reflects the relative variability in systemic clearance and fu.</p>","PeriodicalId":17596,"journal":{"name":"Journal of veterinary pharmacology and therapeutics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of veterinary pharmacology and therapeutics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/jvp.13498","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The clinical breakpoint for a drug-pathogen combination reflects the drug susceptibility of the pathogen wild-type population, the location of the infection, the integrity of the host immune response, and the drug-pathogen pharmacokinetic (PK)/pharmacodynamic (PD) relationship. That PK/PD relationship, along with the population variability in drug exposure, is used to determine the probability of target attainment (PTA) of the PK/PD index at a specified minimum inhibitory concentration (MIC) for a selected target value. The PTA is used to identify the pharmacodynamic cutoff value (COPD), which is one of the three components used to establish the clinical breakpoint. A challenge encountered when defining the COPD is that the available PK information typically reflects total (free plus protein-bound) plasma concentrations. However, it is the unbound drug concentrations that exert the therapeutic effects and how the population fraction unbound (fu) incorporated into the COPD assessments can markedly influence the COPD. Factors examined included the estimated population fu mean (risk of bias) and the incorporation of estimated fu population variability into the Monte Carlo simulations when converting total to unbound plasma concentrations (risk of inflating variability). In this in silico study, the drug fu, systemic clearance, and the variability of both were altered so that the relative impact of each could be explored. We demonstrate that incorporating fu variability into the estimation of fAUCback can bias the COPD assessment and that the magnitude of bias reflects the relative variability in systemic clearance and fu.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
15.40%
发文量
69
审稿时长
8-16 weeks
期刊介绍: The Journal of Veterinary Pharmacology and Therapeutics (JVPT) is an international journal devoted to the publication of scientific papers in the basic and clinical aspects of veterinary pharmacology and toxicology, whether the study is in vitro, in vivo, ex vivo or in silico. The Journal is a forum for recent scientific information and developments in the discipline of veterinary pharmacology, including toxicology and therapeutics. Studies that are entirely in vitro will not be considered within the scope of JVPT unless the study has direct relevance to the use of the drug (including toxicants and feed additives) in veterinary species, or that it can be clearly demonstrated that a similar outcome would be expected in vivo. These studies should consider approved or widely used veterinary drugs and/or drugs with broad applicability to veterinary species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信