A Novel CNN-Based Framework for Alzheimer's Disease Detection Using EEG Spectrogram Representations.

IF 3 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
Konstantinos Stefanou, Katerina D Tzimourta, Christos Bellos, Georgios Stergios, Konstantinos Markoglou, Emmanouil Gionanidis, Markos G Tsipouras, Nikolaos Giannakeas, Alexandros T Tzallas, Andreas Miltiadous
{"title":"A Novel CNN-Based Framework for Alzheimer's Disease Detection Using EEG Spectrogram Representations.","authors":"Konstantinos Stefanou, Katerina D Tzimourta, Christos Bellos, Georgios Stergios, Konstantinos Markoglou, Emmanouil Gionanidis, Markos G Tsipouras, Nikolaos Giannakeas, Alexandros T Tzallas, Andreas Miltiadous","doi":"10.3390/jpm15010027","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Alzheimer's disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing prevalence and severity. Diagnosing AD and other dementias, such as frontotemporal dementia (FTD), is slow and resource-intensive, underscoring the need for automated approaches. <b>Methods:</b> To address this gap, this study proposes a novel deep learning methodology for EEG classification of AD, FTD, and control (CN) signals. The approach incorporates advanced preprocessing techniques and CNN classification of FFT-based spectrograms and is evaluated using the leave-N-subjects-out validation, ensuring robust cross-subject generalizability. <b>Results:</b> The results indicate that the proposed methodology outperforms state-of-the-art machine learning and EEG-specific neural network models, achieving an accuracy of 79.45% for AD/CN classification and 80.69% for AD+FTD/CN classification. <b>Conclusions:</b> These results highlight the potential of EEG-based deep learning models for early dementia screening, enabling more efficient, scalable, and accessible diagnostic tools.</p>","PeriodicalId":16722,"journal":{"name":"Journal of Personalized Medicine","volume":"15 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766904/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jpm15010027","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing prevalence and severity. Diagnosing AD and other dementias, such as frontotemporal dementia (FTD), is slow and resource-intensive, underscoring the need for automated approaches. Methods: To address this gap, this study proposes a novel deep learning methodology for EEG classification of AD, FTD, and control (CN) signals. The approach incorporates advanced preprocessing techniques and CNN classification of FFT-based spectrograms and is evaluated using the leave-N-subjects-out validation, ensuring robust cross-subject generalizability. Results: The results indicate that the proposed methodology outperforms state-of-the-art machine learning and EEG-specific neural network models, achieving an accuracy of 79.45% for AD/CN classification and 80.69% for AD+FTD/CN classification. Conclusions: These results highlight the potential of EEG-based deep learning models for early dementia screening, enabling more efficient, scalable, and accessible diagnostic tools.

基于cnn的阿尔茨海默病检测框架。
背景:阿尔茨海默病(AD)是一种进行性神经退行性疾病,由于其日益增加的患病率和严重程度,对全球医疗保健构成了严峻的挑战。诊断阿尔茨海默病和其他痴呆,如额颞叶痴呆(FTD),是缓慢和资源密集型的,强调了自动化方法的必要性。方法:为了解决这一空白,本研究提出了一种新的深度学习方法,用于AD, FTD和控制(CN)信号的EEG分类。该方法结合了先进的预处理技术和基于fft的频谱图的CNN分类,并使用left - n -subject -out验证进行评估,确保了强大的跨主题泛化性。结果表明,该方法优于最先进的机器学习和脑电图特定神经网络模型,AD/CN分类的准确率为79.45%,AD+FTD/CN分类的准确率为80.69%。结论:这些结果突出了基于脑电图的深度学习模型在早期痴呆症筛查中的潜力,使诊断工具更加高效、可扩展和可获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Personalized Medicine
Journal of Personalized Medicine Medicine-Medicine (miscellaneous)
CiteScore
4.10
自引率
0.00%
发文量
1878
审稿时长
11 weeks
期刊介绍: Journal of Personalized Medicine (JPM; ISSN 2075-4426) is an international, open access journal aimed at bringing all aspects of personalized medicine to one platform. JPM publishes cutting edge, innovative preclinical and translational scientific research and technologies related to personalized medicine (e.g., pharmacogenomics/proteomics, systems biology). JPM recognizes that personalized medicine—the assessment of genetic, environmental and host factors that cause variability of individuals—is a challenging, transdisciplinary topic that requires discussions from a range of experts. For a comprehensive perspective of personalized medicine, JPM aims to integrate expertise from the molecular and translational sciences, therapeutics and diagnostics, as well as discussions of regulatory, social, ethical and policy aspects. We provide a forum to bring together academic and clinical researchers, biotechnology, diagnostic and pharmaceutical companies, health professionals, regulatory and ethical experts, and government and regulatory authorities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信