{"title":"UiO-66 Metal-Organic Framework Membranes: Structural Engineering for Separation Applications.","authors":"Yanwei Sun","doi":"10.3390/membranes15010008","DOIUrl":null,"url":null,"abstract":"<p><p>Metal-organic frameworks (MOFs) have been recognized as promising materials for membrane-based separation technologies due to their exceptional porosity, structural tunability, and chemical stability. This review presents a comprehensive discussion of the advancements in structure engineering and design strategies that have been employed to optimize UiO-66 membranes for enhanced separation performance. Various synthesis methods for UiO-66 membranes are explored, with a focus on modulated approaches that incorporate different modulators to fine-tune nucleation rates and crystallization processes. The influence of preferred orientation, membrane thickness, pore size, pore surface chemistry, and hierarchical structures on the separation performance is concluded. By providing a consolidated overview of current research efforts and future directions in UiO-66 membrane development, this review aims to inspire further advancements in the field of separation technologies.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767111/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15010008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-organic frameworks (MOFs) have been recognized as promising materials for membrane-based separation technologies due to their exceptional porosity, structural tunability, and chemical stability. This review presents a comprehensive discussion of the advancements in structure engineering and design strategies that have been employed to optimize UiO-66 membranes for enhanced separation performance. Various synthesis methods for UiO-66 membranes are explored, with a focus on modulated approaches that incorporate different modulators to fine-tune nucleation rates and crystallization processes. The influence of preferred orientation, membrane thickness, pore size, pore surface chemistry, and hierarchical structures on the separation performance is concluded. By providing a consolidated overview of current research efforts and future directions in UiO-66 membrane development, this review aims to inspire further advancements in the field of separation technologies.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.