Carolina E Demaman Oro, Bruna M Saorin Puton, Luciana D Venquiaruto, Rogério Marcos Dallago, Giordana Demaman Arend, Marcus V Tres
{"title":"The Role of Membranes in Modern Winemaking: From Clarification to Dealcoholization.","authors":"Carolina E Demaman Oro, Bruna M Saorin Puton, Luciana D Venquiaruto, Rogério Marcos Dallago, Giordana Demaman Arend, Marcus V Tres","doi":"10.3390/membranes15010014","DOIUrl":null,"url":null,"abstract":"<p><p>The utilization of membrane technologies in winemaking has revolutionized various stages of production, offering precise and efficient alternatives to traditional methods. Membranes, characterized by their selective permeability, play a pivotal role in enhancing wine quality across multiple processes. In clarification, microfiltration and ultrafiltration membranes, such as ceramic or polymeric membranes (e.g., polyethersulfone or PVDF), effectively remove suspended solids and colloids, resulting in a clearer wine without the need for chemical agents. During stabilization, membranes such as nanofiltration and reverse osmosis membranes, often made from polyamide composite materials, enable the selective removal of proteins, polysaccharides, and microorganisms, thereby improving the wine's stability and extending its shelf life. Additionally, in dealcoholization, membranes like reverse osmosis and pervaporation membranes, typically constructed from polydimethylsiloxane (PDMS) or other specialized polymers, facilitate the selective removal of ethanol while preserving the wine's flavor and aroma profile, addressing the increasing consumer demand for low-alcohol and alcohol-free wines. This article provides a comprehensive analysis of the advancements and applications of membrane technologies in winemaking.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766575/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15010014","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of membrane technologies in winemaking has revolutionized various stages of production, offering precise and efficient alternatives to traditional methods. Membranes, characterized by their selective permeability, play a pivotal role in enhancing wine quality across multiple processes. In clarification, microfiltration and ultrafiltration membranes, such as ceramic or polymeric membranes (e.g., polyethersulfone or PVDF), effectively remove suspended solids and colloids, resulting in a clearer wine without the need for chemical agents. During stabilization, membranes such as nanofiltration and reverse osmosis membranes, often made from polyamide composite materials, enable the selective removal of proteins, polysaccharides, and microorganisms, thereby improving the wine's stability and extending its shelf life. Additionally, in dealcoholization, membranes like reverse osmosis and pervaporation membranes, typically constructed from polydimethylsiloxane (PDMS) or other specialized polymers, facilitate the selective removal of ethanol while preserving the wine's flavor and aroma profile, addressing the increasing consumer demand for low-alcohol and alcohol-free wines. This article provides a comprehensive analysis of the advancements and applications of membrane technologies in winemaking.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.