Hristo Penchev, Galia Ivanova, Venelin Hubenov, Ivanka Boyadzieva, Desislava Budurova, Filip Ublekov, Adriana Gigova, Antonia Stoyanova
{"title":"Supercapacitor Cell Performance with Bacterial Nanocellulose and Bacterial Nanocellulose/Polybenzimidazole Impregnated Membranes as Separator.","authors":"Hristo Penchev, Galia Ivanova, Venelin Hubenov, Ivanka Boyadzieva, Desislava Budurova, Filip Ublekov, Adriana Gigova, Antonia Stoyanova","doi":"10.3390/membranes15010012","DOIUrl":null,"url":null,"abstract":"<p><p>Supercapacitors are advanced energy storage devices renowned for their rapid energy delivery and long operational lifespan, making them indispensable across various industries. Their relevance has grown in recent years due to the adoption of environmentally friendly materials. One such material is bacterial nanocellulose (BNC), produced entirely from microbial sources, offering sustainability and a bioprocess-driven synthesis. In this study, BNC was synthesized using a symbiotic microbial community. After production and purification, pristine BNC membranes, with an average thickness of 80 microns, were impregnated with an alkali-alcohol meta-polybenzimidazole (PBI) solution. This process yielded hybrid BNC/PBI membranes with improved ion-transport properties. The BNC membranes were then doped with a 6 M KOH solution, to enhance OH<sup>-</sup> conductivity, and characterized using optical microscopy, ATR FT-IR, XRD, CVT, BET analysis, and impedance spectroscopy. Both BNC and BNC/PBI membranes were tested as separators in laboratory-scale symmetric supercapacitor cells, with performance compared to a commercial Viledon<sup>®</sup> separator. The supercapacitors employing BNC membranes exhibited high specific capacitance and excellent cycling stability, retaining performance over 10,000 charge/discharge cycles. These findings underscore the potential of BNC/KOH membranes for next-generation supercapacitor applications.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766590/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15010012","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Supercapacitors are advanced energy storage devices renowned for their rapid energy delivery and long operational lifespan, making them indispensable across various industries. Their relevance has grown in recent years due to the adoption of environmentally friendly materials. One such material is bacterial nanocellulose (BNC), produced entirely from microbial sources, offering sustainability and a bioprocess-driven synthesis. In this study, BNC was synthesized using a symbiotic microbial community. After production and purification, pristine BNC membranes, with an average thickness of 80 microns, were impregnated with an alkali-alcohol meta-polybenzimidazole (PBI) solution. This process yielded hybrid BNC/PBI membranes with improved ion-transport properties. The BNC membranes were then doped with a 6 M KOH solution, to enhance OH- conductivity, and characterized using optical microscopy, ATR FT-IR, XRD, CVT, BET analysis, and impedance spectroscopy. Both BNC and BNC/PBI membranes were tested as separators in laboratory-scale symmetric supercapacitor cells, with performance compared to a commercial Viledon® separator. The supercapacitors employing BNC membranes exhibited high specific capacitance and excellent cycling stability, retaining performance over 10,000 charge/discharge cycles. These findings underscore the potential of BNC/KOH membranes for next-generation supercapacitor applications.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.