Single-Cell Transcriptomic Analysis Reveals Biomechanical Loading-Induced Imbalance in Bone and Fat, Leading to Ossification in Lumbar Intervertebral Disc Nucleus Pulposus Degeneration
{"title":"Single-Cell Transcriptomic Analysis Reveals Biomechanical Loading-Induced Imbalance in Bone and Fat, Leading to Ossification in Lumbar Intervertebral Disc Nucleus Pulposus Degeneration","authors":"Ping Zhang, Yuan Wang, Jianqi Bai, Jingru Zhang, Shimin Zhang, Xiaofei Guo, Jiawen Zhan, Liguo Zhu","doi":"10.1002/jcp.31506","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this study, we explored the impact of different biomechanical loadings on lumbar spine motion segments, particularly concerning intervertebral disc degeneration (IVDD). We aimed to uncover the cellular milieu and mechanisms driving ossification in the nucleus pulposus (NP) during IVDD, a process whose underlying mechanisms have remained elusive. The study involved the examination of fresh NP tissue from the L3-S1 segment of five individuals, either with IVDD or healthy. The analysis consisted of histopathological evaluation and single-cell RNA sequencing. To further validate the impact of biomechanical loading on IVDD, particularly on the CITED4 + METRN + NP chondrocytes and the bone-fat balance mechanism, a retrospective analysis was conducted using paraffin-embedded NP samples from patients. A distinct subset of CITED4 + METRN+ chondrocytes in the degenerated NP that were influenced by biomechanical loading was identified. These cells were evaluated for their potential as diagnostic biomarkers. Pseudotemporal analysis indicated that inflammation and repair processes were integral to NP ossification. Notably, the L4/5 and L5/S1 segments with severe IVDD showed pronounced ossification and heightened lipogenic metabolism. Cell communication analysis sheds light on the roles of bone-fat balance proteins and various ossification genes. Additionally, immunohistochemistry and immunofluorescence confirmed that biomechanical loading intensified IVDD by fostering osteogenic differentiation, mediated by macrophage migration inhibitory factor (MIF)-regulated bone-fat balance. This research reveals the microenvironmental factors of IVDD NP ossification under biomechanical loading, highlighting the role of bone-fat imbalance. These insights significantly enhance the understanding of IVDD pathogenesis and pave the way for innovative therapeutic approaches.</p></div>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.31506","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we explored the impact of different biomechanical loadings on lumbar spine motion segments, particularly concerning intervertebral disc degeneration (IVDD). We aimed to uncover the cellular milieu and mechanisms driving ossification in the nucleus pulposus (NP) during IVDD, a process whose underlying mechanisms have remained elusive. The study involved the examination of fresh NP tissue from the L3-S1 segment of five individuals, either with IVDD or healthy. The analysis consisted of histopathological evaluation and single-cell RNA sequencing. To further validate the impact of biomechanical loading on IVDD, particularly on the CITED4 + METRN + NP chondrocytes and the bone-fat balance mechanism, a retrospective analysis was conducted using paraffin-embedded NP samples from patients. A distinct subset of CITED4 + METRN+ chondrocytes in the degenerated NP that were influenced by biomechanical loading was identified. These cells were evaluated for their potential as diagnostic biomarkers. Pseudotemporal analysis indicated that inflammation and repair processes were integral to NP ossification. Notably, the L4/5 and L5/S1 segments with severe IVDD showed pronounced ossification and heightened lipogenic metabolism. Cell communication analysis sheds light on the roles of bone-fat balance proteins and various ossification genes. Additionally, immunohistochemistry and immunofluorescence confirmed that biomechanical loading intensified IVDD by fostering osteogenic differentiation, mediated by macrophage migration inhibitory factor (MIF)-regulated bone-fat balance. This research reveals the microenvironmental factors of IVDD NP ossification under biomechanical loading, highlighting the role of bone-fat imbalance. These insights significantly enhance the understanding of IVDD pathogenesis and pave the way for innovative therapeutic approaches.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.