Paola Campione, Maria Giovanna Rizzo, Luana Vittoria Bauso, Ileana Ielo, Grazia Maria Lucia Messina, Giovanna Calabrese
{"title":"Osteoblastic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells on P3HT Thin Polymer Film.","authors":"Paola Campione, Maria Giovanna Rizzo, Luana Vittoria Bauso, Ileana Ielo, Grazia Maria Lucia Messina, Giovanna Calabrese","doi":"10.3390/jfb16010010","DOIUrl":null,"url":null,"abstract":"<p><p>Bone defects restoration has always been an arduous challenge in the orthopedic field due to the limitations of conventional grafts. Bone tissue engineering offers an alternative approach by using biomimetic materials, stem cells, and growth factors that are able to improve the regeneration of bone tissue. Different biomaterials have attracted great interest in BTE applications, including the poly(3-hexylthiofene) (P3HT) conductive polymer, whose primary advantage is its capability to provide a native extracellular matrix-like environment. Based on this evidence, in this study, we evaluated the biological response of human adipose-derived mesenchymal stem cells cultured on P3HT thin polymer film for 14 days. Our results suggest that P3HT represents a good substrate to induce osteogenic differentiation of osteoprogenitor cells, even in the absence of specific inductive growth factors, thus representing a promising strategy for bone regenerative medicine. Therefore, the system provided may offer an innovative platform for next-generation biocompatible materials for regenerative medicine.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765816/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16010010","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bone defects restoration has always been an arduous challenge in the orthopedic field due to the limitations of conventional grafts. Bone tissue engineering offers an alternative approach by using biomimetic materials, stem cells, and growth factors that are able to improve the regeneration of bone tissue. Different biomaterials have attracted great interest in BTE applications, including the poly(3-hexylthiofene) (P3HT) conductive polymer, whose primary advantage is its capability to provide a native extracellular matrix-like environment. Based on this evidence, in this study, we evaluated the biological response of human adipose-derived mesenchymal stem cells cultured on P3HT thin polymer film for 14 days. Our results suggest that P3HT represents a good substrate to induce osteogenic differentiation of osteoprogenitor cells, even in the absence of specific inductive growth factors, thus representing a promising strategy for bone regenerative medicine. Therefore, the system provided may offer an innovative platform for next-generation biocompatible materials for regenerative medicine.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.