Oxidative and nitrative DNA damage induced by industrial chemicals in relation to carcinogenesis.

IF 2.6 4区 医学 Q2 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Yusuke Hiraku
{"title":"Oxidative and nitrative DNA damage induced by industrial chemicals in relation to carcinogenesis.","authors":"Yusuke Hiraku","doi":"10.1093/joccuh/uiaf003","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Many chemicals have been used for industrial purposes, and some of them are carcinogenic to humans. However, the molecular mechanisms of their carcinogenetic effects have not been well understood. Reactive oxygen species are generated from industrial chemicals and contribute to carcinogenesis. Particles and fibers are accumulated in respiratory systems by inhalation exposure and cause chronic inflammation. Under inflammatory conditions, reactive nitrogen species are generated from inflammatory and epithelial cells. These species cause oxidative and nitrative DNA damage, leading to carcinogenesis. We carried out experiments on DNA damage induced by various industrial chemicals and investigated their molecular mechanisms.</p><p><strong>Methods: </strong>We examined oxidative DNA damage induced by industrial chemicals using DNA fragments derived from human cancer-relevant genes by polyacrylamide gel electrophoresis. Using immunohistochemistry and immunocytochemistry we also examined the formation of 8-nitroguanine (8-nitroG), a DNA lesion formed under inflammatory conditions, in lung tissues and cultured cells exposed to industrial chemicals.</p><p><strong>Results: </strong>Benzene and o-toluidine metabolites caused oxidative damage to DNA fragments in the presence of Cu(II). H2O2 and Cu(I) were generated during oxidation of these chemicals and involved in DNA damage. 8-NitroG formation was observed in lung tissues of asbestos-exposed mice and humans. Carbon nanomaterials and indium compounds induced 8-nitroG formation in human lung epithelial cells via the release of damage-associated molecular patterns from exposed cells.</p><p><strong>Conclusions: </strong>Various industrial chemicals are considered to induce carcinogenesis by causing oxidative and nitrative DNA damage. These findings provide an insight into risk assessment of industrial chemicals and prevention of carcinogenesis in workplaces.</p>","PeriodicalId":16632,"journal":{"name":"Journal of Occupational Health","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Occupational Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/joccuh/uiaf003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Many chemicals have been used for industrial purposes, and some of them are carcinogenic to humans. However, the molecular mechanisms of their carcinogenetic effects have not been well understood. Reactive oxygen species are generated from industrial chemicals and contribute to carcinogenesis. Particles and fibers are accumulated in respiratory systems by inhalation exposure and cause chronic inflammation. Under inflammatory conditions, reactive nitrogen species are generated from inflammatory and epithelial cells. These species cause oxidative and nitrative DNA damage, leading to carcinogenesis. We carried out experiments on DNA damage induced by various industrial chemicals and investigated their molecular mechanisms.

Methods: We examined oxidative DNA damage induced by industrial chemicals using DNA fragments derived from human cancer-relevant genes by polyacrylamide gel electrophoresis. Using immunohistochemistry and immunocytochemistry we also examined the formation of 8-nitroguanine (8-nitroG), a DNA lesion formed under inflammatory conditions, in lung tissues and cultured cells exposed to industrial chemicals.

Results: Benzene and o-toluidine metabolites caused oxidative damage to DNA fragments in the presence of Cu(II). H2O2 and Cu(I) were generated during oxidation of these chemicals and involved in DNA damage. 8-NitroG formation was observed in lung tissues of asbestos-exposed mice and humans. Carbon nanomaterials and indium compounds induced 8-nitroG formation in human lung epithelial cells via the release of damage-associated molecular patterns from exposed cells.

Conclusions: Various industrial chemicals are considered to induce carcinogenesis by causing oxidative and nitrative DNA damage. These findings provide an insight into risk assessment of industrial chemicals and prevention of carcinogenesis in workplaces.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Occupational Health
Journal of Occupational Health 医学-公共卫生、环境卫生与职业卫生
CiteScore
5.60
自引率
3.30%
发文量
57
审稿时长
6-12 weeks
期刊介绍: The scope of the journal is broad, covering toxicology, ergonomics, psychosocial factors and other relevant health issues of workers, with special emphasis on the current developments in occupational health. The JOH also accepts various methodologies that are relevant to investigation of occupational health risk factors and exposures, such as large-scale epidemiological studies, human studies employing biological techniques and fundamental experiments on animals, and also welcomes submissions concerning occupational health practices and related issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信