Optimizing Bioaugmentation for Pharmaceutical Stabilization of Sewage Sludge: A Study on Short-Term Composting Under Real Conditions.

IF 4.2 2区 生物学 Q2 MICROBIOLOGY
Gabriela Angeles-De Paz, Juan Cubero-Cardoso, Clementina Pozo, Concepción Calvo, Elisabet Aranda, Tatiana Robledo-Mahón
{"title":"Optimizing Bioaugmentation for Pharmaceutical Stabilization of Sewage Sludge: A Study on Short-Term Composting Under Real Conditions.","authors":"Gabriela Angeles-De Paz, Juan Cubero-Cardoso, Clementina Pozo, Concepción Calvo, Elisabet Aranda, Tatiana Robledo-Mahón","doi":"10.3390/jof11010067","DOIUrl":null,"url":null,"abstract":"<p><p>A significant concentration of pharmaceuticals has been detected within composted sewage sludge. Their uncomplete removal and lack of monitoring during composting neglects their potentially toxic effects when used as a soil organic amendment. Previously, we successfully implemented a bioaugmentation-composting system focused on toxicity and pharmaceuticals' concentration reduction. This method, however, comprised a long inoculant-acclimatization period, making it an unprofitable technology. Hence, this work aimed to explore a shorter and yet effective composting process by simultaneously implementing the inoculation of a native microbial consortium and the fungus <i>Penicillium oxalicum</i> XD 3.1 in composting piles of sewage sludge and olive prunings. All the piles were subjected to frequent inoculation, windrow turning, and monitoring of the physicochemical and biological parameters. Additionally, both the bioaugmentation stability and pharmaceuticals degradation were evaluated through different analysis and removal rates calculations. One hundred days earlier than previous attempts, both bioaugmentation treatments achieved adequate composting conditions, maintained core native populations while improving the degrading microbial diversity, and achieved around 70-72% of pharmaceutical remotion. Nevertheless, only <i>Penicillium</i> inoculation produced favorable toxicity results ideal for organic amendments (acute microtoxicity and phytotoxicity). Thus, a shorter but equally stable and effective degrading bioaugmentation-composting with <i>P. oxalicum</i> was achieved here.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766644/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11010067","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A significant concentration of pharmaceuticals has been detected within composted sewage sludge. Their uncomplete removal and lack of monitoring during composting neglects their potentially toxic effects when used as a soil organic amendment. Previously, we successfully implemented a bioaugmentation-composting system focused on toxicity and pharmaceuticals' concentration reduction. This method, however, comprised a long inoculant-acclimatization period, making it an unprofitable technology. Hence, this work aimed to explore a shorter and yet effective composting process by simultaneously implementing the inoculation of a native microbial consortium and the fungus Penicillium oxalicum XD 3.1 in composting piles of sewage sludge and olive prunings. All the piles were subjected to frequent inoculation, windrow turning, and monitoring of the physicochemical and biological parameters. Additionally, both the bioaugmentation stability and pharmaceuticals degradation were evaluated through different analysis and removal rates calculations. One hundred days earlier than previous attempts, both bioaugmentation treatments achieved adequate composting conditions, maintained core native populations while improving the degrading microbial diversity, and achieved around 70-72% of pharmaceutical remotion. Nevertheless, only Penicillium inoculation produced favorable toxicity results ideal for organic amendments (acute microtoxicity and phytotoxicity). Thus, a shorter but equally stable and effective degrading bioaugmentation-composting with P. oxalicum was achieved here.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fungi
Journal of Fungi Medicine-Microbiology (medical)
CiteScore
6.70
自引率
14.90%
发文量
1151
审稿时长
11 weeks
期刊介绍: Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信