Pilot-Scale Enzymatic Conversion of Low Stability, High Free Fatty, Squid Oil to an Oxidatively Stable Astaxanthin-Rich Acylglyceride Oil Suitable for Nutritional Applications.

IF 4.9 2区 医学 Q1 CHEMISTRY, MEDICINAL
Marine Drugs Pub Date : 2025-01-02 DOI:10.3390/md23010021
Asavari Joshi, Brendan Holland, Moninder Sachar, Colin J Barrow
{"title":"Pilot-Scale Enzymatic Conversion of Low Stability, High Free Fatty, Squid Oil to an Oxidatively Stable Astaxanthin-Rich Acylglyceride Oil Suitable for Nutritional Applications.","authors":"Asavari Joshi, Brendan Holland, Moninder Sachar, Colin J Barrow","doi":"10.3390/md23010021","DOIUrl":null,"url":null,"abstract":"<p><p>Squid viscera, a byproduct of squid processing, contains oil rich in omega-3 fatty acids (up to 10% by mass) and the antioxidant astaxanthin. However, its high free fatty acid (FFA) content compromises stability. To address this, pilot-scale (200 L) enzymatic re-esterification of squid oil using immobilized lipase (Lipozyme RMIM) was demonstrated, resulting in high acylglyceride yields. The processed oil was analyzed for oxidation kinetics and thermodynamics using Rancimat, fatty acid composition using GC, omega-3 fatty acid positional distribution in the acylglyceride product using <sup>13</sup>C NMR, and astaxanthin content. Lipase treatment reduced FFA levels from 44% to 4% and increased acylglycerides to 93% in squid oil. This reduction in FFA was accompanied by significantly increased stability (0.06 to 18.9 h by Rancimat). The treated oil showed no loss in astaxanthin (194.1 µg/g) or omega-3 fatty acids, including docosahexaenoic acid (DHA). DHA remaining predominantly at sn-2 indicated that the naturally occurring positional distribution of this omega-3 FFA was retained in the product. Lipase treatment significantly enhanced oxidative stability, evidenced by improved thermodynamic parameters (E<sub>a</sub> 94.15 kJ/mol, ΔH 91.09 kJ/mol, ΔS -12.6 J/mol K) and extended shelf life (IP<sub>25</sub> 74.42 days) compared to starting squid oil and commercial fish/squid oils lacking astaxanthin. Thus, lipase treatment offers an effective strategy for reducing FFA levels and producing oxidatively stable, astaxanthin-rich acylglyceride squid oil with DHA retained at the nutritionally favored sn-2 position.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766736/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23010021","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Squid viscera, a byproduct of squid processing, contains oil rich in omega-3 fatty acids (up to 10% by mass) and the antioxidant astaxanthin. However, its high free fatty acid (FFA) content compromises stability. To address this, pilot-scale (200 L) enzymatic re-esterification of squid oil using immobilized lipase (Lipozyme RMIM) was demonstrated, resulting in high acylglyceride yields. The processed oil was analyzed for oxidation kinetics and thermodynamics using Rancimat, fatty acid composition using GC, omega-3 fatty acid positional distribution in the acylglyceride product using 13C NMR, and astaxanthin content. Lipase treatment reduced FFA levels from 44% to 4% and increased acylglycerides to 93% in squid oil. This reduction in FFA was accompanied by significantly increased stability (0.06 to 18.9 h by Rancimat). The treated oil showed no loss in astaxanthin (194.1 µg/g) or omega-3 fatty acids, including docosahexaenoic acid (DHA). DHA remaining predominantly at sn-2 indicated that the naturally occurring positional distribution of this omega-3 FFA was retained in the product. Lipase treatment significantly enhanced oxidative stability, evidenced by improved thermodynamic parameters (Ea 94.15 kJ/mol, ΔH 91.09 kJ/mol, ΔS -12.6 J/mol K) and extended shelf life (IP25 74.42 days) compared to starting squid oil and commercial fish/squid oils lacking astaxanthin. Thus, lipase treatment offers an effective strategy for reducing FFA levels and producing oxidatively stable, astaxanthin-rich acylglyceride squid oil with DHA retained at the nutritionally favored sn-2 position.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Drugs
Marine Drugs 医学-医药化学
CiteScore
9.60
自引率
14.80%
发文量
671
审稿时长
1 months
期刊介绍: Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信