Metabolic Blockade-Based Genome Mining of Malbranchea circinata SDU050: Discovery of Diverse Secondary Metabolites.

IF 4.9 2区 医学 Q1 CHEMISTRY, MEDICINAL
Marine Drugs Pub Date : 2025-01-20 DOI:10.3390/md23010050
Hu Yang, Xiaowei Luo, Zhuo Shang, Kunlong Li, Jian Cai, Yingying Chen, Longchao Xin, Jianhua Ju
{"title":"Metabolic Blockade-Based Genome Mining of <i>Malbranchea circinata</i> SDU050: Discovery of Diverse Secondary Metabolites.","authors":"Hu Yang, Xiaowei Luo, Zhuo Shang, Kunlong Li, Jian Cai, Yingying Chen, Longchao Xin, Jianhua Ju","doi":"10.3390/md23010050","DOIUrl":null,"url":null,"abstract":"<p><p><i>Malbranchea circinata</i> SDU050, a fungus derived from deep-sea sediment, is a prolific producer of diverse secondary metabolites. Genome sequencing revealed the presence of at least 69 biosynthetic gene clusters (BGCs), including 30 encoding type I polyketide synthases (PKSs). This study reports the isolation and identification of four classes of secondary metabolites from wild-type <i>M. circinata</i> SDU050, alongside five additional metabolite classes, including three novel cytochalasins (<b>7</b>-<b>9</b>), obtained from a mutant strain through the metabolic blockade strategy. Furthermore, bioinformatic analysis of the BGC associated with the isocoumarin sclerin (<b>1</b>) enabled the deduction of its biosynthetic pathway based on gene function predictions. Bioactivity assays demonstrated that sclerin (<b>1</b>) and (-)-mycousnine (<b>10</b>) exhibited weak antibacterial activity against Gram-positive bacteria such as <i>Staphylococcus aureus</i>, methicillin-resistant <i>Staphylococcus aureus</i> (MRSA), and <i>Bacillus subtilis</i>. These findings underscore the chemical diversity and biosynthetic potential of <i>M. circinata</i> SDU050 and highlight an effective strategy for exploring marine fungal metabolites.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766578/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23010050","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Malbranchea circinata SDU050, a fungus derived from deep-sea sediment, is a prolific producer of diverse secondary metabolites. Genome sequencing revealed the presence of at least 69 biosynthetic gene clusters (BGCs), including 30 encoding type I polyketide synthases (PKSs). This study reports the isolation and identification of four classes of secondary metabolites from wild-type M. circinata SDU050, alongside five additional metabolite classes, including three novel cytochalasins (7-9), obtained from a mutant strain through the metabolic blockade strategy. Furthermore, bioinformatic analysis of the BGC associated with the isocoumarin sclerin (1) enabled the deduction of its biosynthetic pathway based on gene function predictions. Bioactivity assays demonstrated that sclerin (1) and (-)-mycousnine (10) exhibited weak antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and Bacillus subtilis. These findings underscore the chemical diversity and biosynthetic potential of M. circinata SDU050 and highlight an effective strategy for exploring marine fungal metabolites.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Drugs
Marine Drugs 医学-医药化学
CiteScore
9.60
自引率
14.80%
发文量
671
审稿时长
1 months
期刊介绍: Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信