Ishophloroglucin A Isolated from Ishige okamurae Protects Glomerular Cells from Methylglyoxal-Induced Diacarbonyl Stress and Inhibits the Pathogenesis of Diabetic Nephropathy.

IF 4.9 2区 医学 Q1 CHEMISTRY, MEDICINAL
Marine Drugs Pub Date : 2025-01-20 DOI:10.3390/md23010048
Chi-Heung Cho, Min-Gyeong Kim, Bomi Ryu, Sang-Hoon Lee
{"title":"Ishophloroglucin A Isolated from <i>Ishige okamurae</i> Protects Glomerular Cells from Methylglyoxal-Induced Diacarbonyl Stress and Inhibits the Pathogenesis of Diabetic Nephropathy.","authors":"Chi-Heung Cho, Min-Gyeong Kim, Bomi Ryu, Sang-Hoon Lee","doi":"10.3390/md23010048","DOIUrl":null,"url":null,"abstract":"<p><p><i>Ishige okamurae</i> (<i>I. okamuare</i>), an edible brown alga, is rich in isophloroglucin A (IPA) phlorotannin compounds and is effective in preventing diseases, including diabetes. We evaluated its anti-glycation ability, intracellular reactive oxygen species scavenging activity, inhibitory effect on the accumulation of intracellular MGO/MGO-derived advanced glycation end products (AGE), and regulation of downstream signaling pathways related to the AGE-receptor for AGEs (RAGE) interaction. IPA (0.2, 1, and 5 μM) demonstrated anti-glycation ability by inhibiting the formation of glucose-fructose-BSA-derived AGEs by up to 54.63% compared to the untreated control, reducing the formation of irreversible cross-links between MGO-derived AGEs and collagen by 67.68% and the breaking down of existing cross-links by approximately 91% (<i>p</i> < 0.001). IPA protected cells from MGO-induced oxidative stress by inhibiting intracellular MGO accumulation (untreated cells: 1.62 μg/mL, MGO treated cells: 25.27 μg/mL, and IPA 5 μM: 11.23 μg/mL) (<i>p</i> < 0.001) and AGE generation and inhibited MGO-induced renal cell damage via the downregulation of MGO-induced RAGE protein expression (relative protein expression levels of MGO treated cells: 9.37 and IPA 5 μM:1.74) (<i>p</i> < 0.001). Overall, these results suggest that IPA has the potential to be utilized as a useful natural agent for the prevention and management of AGE-related diabetic nephropathy, owing to its strong anti-glycation activity.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766881/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23010048","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ishige okamurae (I. okamuare), an edible brown alga, is rich in isophloroglucin A (IPA) phlorotannin compounds and is effective in preventing diseases, including diabetes. We evaluated its anti-glycation ability, intracellular reactive oxygen species scavenging activity, inhibitory effect on the accumulation of intracellular MGO/MGO-derived advanced glycation end products (AGE), and regulation of downstream signaling pathways related to the AGE-receptor for AGEs (RAGE) interaction. IPA (0.2, 1, and 5 μM) demonstrated anti-glycation ability by inhibiting the formation of glucose-fructose-BSA-derived AGEs by up to 54.63% compared to the untreated control, reducing the formation of irreversible cross-links between MGO-derived AGEs and collagen by 67.68% and the breaking down of existing cross-links by approximately 91% (p < 0.001). IPA protected cells from MGO-induced oxidative stress by inhibiting intracellular MGO accumulation (untreated cells: 1.62 μg/mL, MGO treated cells: 25.27 μg/mL, and IPA 5 μM: 11.23 μg/mL) (p < 0.001) and AGE generation and inhibited MGO-induced renal cell damage via the downregulation of MGO-induced RAGE protein expression (relative protein expression levels of MGO treated cells: 9.37 and IPA 5 μM:1.74) (p < 0.001). Overall, these results suggest that IPA has the potential to be utilized as a useful natural agent for the prevention and management of AGE-related diabetic nephropathy, owing to its strong anti-glycation activity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Drugs
Marine Drugs 医学-医药化学
CiteScore
9.60
自引率
14.80%
发文量
671
审稿时长
1 months
期刊介绍: Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信