Rujing Hou, Junwei Xie, Yawei Gu, Lei Wang, Yichang Pan
{"title":"Simultaneously Enhanced Permeability and Selectivity of Pebax-1074-Based Mixed-Matrix Membrane for CO<sub>2</sub> Separation.","authors":"Rujing Hou, Junwei Xie, Yawei Gu, Lei Wang, Yichang Pan","doi":"10.3390/membranes15010026","DOIUrl":null,"url":null,"abstract":"<p><p>Membrane technology is a promising methodology for carbon dioxide separation due to its benefit of a small carbon footprint. However, the trade-off relationship between gas permeability and selectivity is one obstacle to limiting its application. Herein, branched polyethyleneimine (BPEI) containing a rich amino group was successfully grafted on the surface of the metal-organic framework (MOF) of AIFFIVE-1-Ni (KAUST-8) through coordination between N in BPEI and open metal sites in the MOF and with the resultant maintained BET surface area and pore volume. Both the strengthened CO<sub>2</sub> solubility coefficients coming from the additional CO<sub>2</sub> adsorption sites of amino groups in BPEI and the reinforced CO<sub>2</sub> diffusivity coefficients originating from the fast transport channels created by KAUST-8 led to the promising CO<sub>2</sub> separation performance for KAUST-8@BPEI/Pebax-1074 MMM. With 5 wt.% KAUST-8@BPEI loading, the MMM showed the CO<sub>2</sub> permeability of 156.5 Barrer and CO<sub>2</sub>/N<sub>2</sub> selectivity of 16.1, while the KAUST-8-incorporated MMM (5 wt.% loading) only exhibited the CO<sub>2</sub> permeability of 86.9 Barrer and CO<sub>2</sub>/N<sub>2</sub> selectivity of 13.0. Such enhancement is superior to most of the reported Pebax-1074-based MMMs for CO<sub>2</sub> separation indicating a wide application for the coordination method for MOF fillers with open metal sites.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766677/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15010026","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Membrane technology is a promising methodology for carbon dioxide separation due to its benefit of a small carbon footprint. However, the trade-off relationship between gas permeability and selectivity is one obstacle to limiting its application. Herein, branched polyethyleneimine (BPEI) containing a rich amino group was successfully grafted on the surface of the metal-organic framework (MOF) of AIFFIVE-1-Ni (KAUST-8) through coordination between N in BPEI and open metal sites in the MOF and with the resultant maintained BET surface area and pore volume. Both the strengthened CO2 solubility coefficients coming from the additional CO2 adsorption sites of amino groups in BPEI and the reinforced CO2 diffusivity coefficients originating from the fast transport channels created by KAUST-8 led to the promising CO2 separation performance for KAUST-8@BPEI/Pebax-1074 MMM. With 5 wt.% KAUST-8@BPEI loading, the MMM showed the CO2 permeability of 156.5 Barrer and CO2/N2 selectivity of 16.1, while the KAUST-8-incorporated MMM (5 wt.% loading) only exhibited the CO2 permeability of 86.9 Barrer and CO2/N2 selectivity of 13.0. Such enhancement is superior to most of the reported Pebax-1074-based MMMs for CO2 separation indicating a wide application for the coordination method for MOF fillers with open metal sites.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.