Sebastian Hetzler, Carina Hinzen, Stefan Rues, Clemens Schmitt, Peter Rammelsberg, Andreas Zenthöfer
{"title":"Biaxial Flexural Strength and Vickers Hardness of 3D-Printed and Milled 5Y Partially Stabilized Zirconia.","authors":"Sebastian Hetzler, Carina Hinzen, Stefan Rues, Clemens Schmitt, Peter Rammelsberg, Andreas Zenthöfer","doi":"10.3390/jfb16010036","DOIUrl":null,"url":null,"abstract":"<p><p>This study compares the mechanical properties of 5-mol% yttria partially stabilized zirconia (5Y-PSZ) materials, designed for 3D printing or milling. Three 5Y-PSZ materials were investigated: printed zirconia (PZ) and two milled zirconia materials, VITA-YZ-XT (MZ-1) and Cercon xt (MZ-2). PZ samples were made from a novel ceramic suspension via digital light processing and divided into three subgroups: PZ-HN-ZD (horizontal nesting, printed with Zipro-D Dental), PZ-VN-Z (vertical nesting, printed with Zipro-D Dental) and PZ-VN-Z (vertical nesting, printed with Zipro Dental). Key outcomes included biaxial flexural strength (ISO 6872) and Vickers hardness (<i>n</i> ≥ 23 samples/subgroup). Microstructure and grain size were analyzed using light and scanning electron microscopy. Printed specimens exhibited biaxial flexural strengths of 1059 ± 178 MPa (PZ-HN-ZD), 797 ± 135 MPa (PZ-VN-ZD), and 793 ± 75 MPa (PZ-VN-Z). Milled samples showed strengths of 745 ± 96 MPa (MZ-1) and 928 ± 87 MPa (MZ-2). Significant differences (α = 0.05) were observed, except between vertically printed groups and MZ-1. Vickers hardness was highest for PZ-VN-Z (HV0.5 = 1590 ± 24), followed by MZ-1 (HV0.5 = 1577 ± 9) and MZ-2 (HV0.5 = 1524 ± 4), with significant differences, except between PZ and MZ-1. PZ samples had the smallest grain size (0.744 ± 0.024 µm) compared to MZ-1 (0.820 ± 0.042 µm) and MZ-2 (1.023 ± 0.081 µm). All materials met ISO 6872 standards for crowns and three-unit prostheses in posterior regions.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766354/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16010036","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study compares the mechanical properties of 5-mol% yttria partially stabilized zirconia (5Y-PSZ) materials, designed for 3D printing or milling. Three 5Y-PSZ materials were investigated: printed zirconia (PZ) and two milled zirconia materials, VITA-YZ-XT (MZ-1) and Cercon xt (MZ-2). PZ samples were made from a novel ceramic suspension via digital light processing and divided into three subgroups: PZ-HN-ZD (horizontal nesting, printed with Zipro-D Dental), PZ-VN-Z (vertical nesting, printed with Zipro-D Dental) and PZ-VN-Z (vertical nesting, printed with Zipro Dental). Key outcomes included biaxial flexural strength (ISO 6872) and Vickers hardness (n ≥ 23 samples/subgroup). Microstructure and grain size were analyzed using light and scanning electron microscopy. Printed specimens exhibited biaxial flexural strengths of 1059 ± 178 MPa (PZ-HN-ZD), 797 ± 135 MPa (PZ-VN-ZD), and 793 ± 75 MPa (PZ-VN-Z). Milled samples showed strengths of 745 ± 96 MPa (MZ-1) and 928 ± 87 MPa (MZ-2). Significant differences (α = 0.05) were observed, except between vertically printed groups and MZ-1. Vickers hardness was highest for PZ-VN-Z (HV0.5 = 1590 ± 24), followed by MZ-1 (HV0.5 = 1577 ± 9) and MZ-2 (HV0.5 = 1524 ± 4), with significant differences, except between PZ and MZ-1. PZ samples had the smallest grain size (0.744 ± 0.024 µm) compared to MZ-1 (0.820 ± 0.042 µm) and MZ-2 (1.023 ± 0.081 µm). All materials met ISO 6872 standards for crowns and three-unit prostheses in posterior regions.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.