{"title":"Light Regulates Secreted Metabolite Production and Antagonistic Activity in <i>Trichoderma</i>.","authors":"Edgardo Ulises Esquivel-Naranjo, Hector Mancilla-Diaz, Rudi Marquez-Mazlin, Hossein Alizadeh, Diwakar Kandula, John Hampton, Artemio Mendoza-Mendoza","doi":"10.3390/jof11010009","DOIUrl":null,"url":null,"abstract":"<p><p>Secondary metabolism is one of the main mechanisms <i>Trichoderma</i> uses to explore and colonize new niches, and 6-pentyl-α-pyrone (6-PP) is an important secondary metabolite in this process. This work focused on standardizing a method to investigate the production of 6-PP. Ethanol and ethyl acetate were both effective solvents for quantifying 6-PP in solution and had limited solubility in potato-dextrose-broth media. The 6-PP extraction using ethyl acetate provided a rapid and efficient process to recover this metabolite. The 6-PP was readily produced during the development of <i>Trichoderma atroviride</i> growing in the dark, but light suppressed its production. The 6-PP was purified, and its spectrum by nuclear magnetic resonance and mass spectroscopy was identical to that of commercial 6-PP. Light also induced or suppressed other unidentified metabolites in several other species of <i>Trichoderma</i>. The antagonistic activity of <i>T. atroviride</i> was influenced by light, as suppression of plant pathogens was greater in the dark. The secreted metabolite production on potato-dextrose-agar was differentially regulated by light, indicating that <i>Trichoderma</i> produced several metabolites with antagonistic activity against plant pathogens. Light has an important influence on the secondary metabolism and antagonistic activity of <i>Trichoderma</i>, and this trait is of key relevance for selecting antagonistic <i>Trichoderma</i> strains for plant protection.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767173/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11010009","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Secondary metabolism is one of the main mechanisms Trichoderma uses to explore and colonize new niches, and 6-pentyl-α-pyrone (6-PP) is an important secondary metabolite in this process. This work focused on standardizing a method to investigate the production of 6-PP. Ethanol and ethyl acetate were both effective solvents for quantifying 6-PP in solution and had limited solubility in potato-dextrose-broth media. The 6-PP extraction using ethyl acetate provided a rapid and efficient process to recover this metabolite. The 6-PP was readily produced during the development of Trichoderma atroviride growing in the dark, but light suppressed its production. The 6-PP was purified, and its spectrum by nuclear magnetic resonance and mass spectroscopy was identical to that of commercial 6-PP. Light also induced or suppressed other unidentified metabolites in several other species of Trichoderma. The antagonistic activity of T. atroviride was influenced by light, as suppression of plant pathogens was greater in the dark. The secreted metabolite production on potato-dextrose-agar was differentially regulated by light, indicating that Trichoderma produced several metabolites with antagonistic activity against plant pathogens. Light has an important influence on the secondary metabolism and antagonistic activity of Trichoderma, and this trait is of key relevance for selecting antagonistic Trichoderma strains for plant protection.
期刊介绍:
Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.