Gianna Dipalma, Angelo Michele Inchingolo, Valeria Colonna, Pierluigi Marotti, Claudio Carone, Laura Ferrante, Francesco Inchingolo, Andrea Palermo, Alessio Danilo Inchingolo
{"title":"Autologous and Heterologous Minor and Major Bone Regeneration with Platelet-Derived Growth Factors.","authors":"Gianna Dipalma, Angelo Michele Inchingolo, Valeria Colonna, Pierluigi Marotti, Claudio Carone, Laura Ferrante, Francesco Inchingolo, Andrea Palermo, Alessio Danilo Inchingolo","doi":"10.3390/jfb16010016","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>This review aims to explore the clinical applications, biological mechanisms, and potential benefits of concentrated growth factors (CGFs), autologous materials, and xenografts in bone regeneration, particularly in dental treatments such as alveolar ridge preservation, mandibular osteonecrosis, and peri-implantitis.</p><p><strong>Materials and methods: </strong>A systematic literature search was conducted using databases like PubMed, Scopus, and Web of Science, with keywords such as \"bone regeneration\" and \"CGF\" from 2014 to 2024. Only English-language clinical studies involving human subjects were included. A total of 10 studies were selected for qualitative analysis. Data were processed through multiple stages, including title and abstract screening and full-text evaluation.</p><p><strong>Conclusion: </strong>The findings of the reviewed studies underscore the potential of the CGF in enhancing bone regeneration through stimulating cell proliferation, angiogenesis, and extracellular matrix mineralization. Autologous materials have also demonstrated promising results due to their biocompatibility and capacity for seamless integration with natural bone tissue. When combined with xenografts, these materials show synergistic effects in improving bone quantity and quality, which are crucial for dental implant success. Future research should focus on direct comparisons of different techniques, the optimization of protocols, and broader applications beyond dental medicine. The integration of CGFs and autologous materials into routine clinical practice represents a significant advancement in regenerative dental medicine, with the potential for improved patient outcomes and satisfaction.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765672/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16010016","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: This review aims to explore the clinical applications, biological mechanisms, and potential benefits of concentrated growth factors (CGFs), autologous materials, and xenografts in bone regeneration, particularly in dental treatments such as alveolar ridge preservation, mandibular osteonecrosis, and peri-implantitis.
Materials and methods: A systematic literature search was conducted using databases like PubMed, Scopus, and Web of Science, with keywords such as "bone regeneration" and "CGF" from 2014 to 2024. Only English-language clinical studies involving human subjects were included. A total of 10 studies were selected for qualitative analysis. Data were processed through multiple stages, including title and abstract screening and full-text evaluation.
Conclusion: The findings of the reviewed studies underscore the potential of the CGF in enhancing bone regeneration through stimulating cell proliferation, angiogenesis, and extracellular matrix mineralization. Autologous materials have also demonstrated promising results due to their biocompatibility and capacity for seamless integration with natural bone tissue. When combined with xenografts, these materials show synergistic effects in improving bone quantity and quality, which are crucial for dental implant success. Future research should focus on direct comparisons of different techniques, the optimization of protocols, and broader applications beyond dental medicine. The integration of CGFs and autologous materials into routine clinical practice represents a significant advancement in regenerative dental medicine, with the potential for improved patient outcomes and satisfaction.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.