Biases in Volumetric Versus Surface Analyses in Population Receptive Field Mapping

IF 3.5 2区 医学 Q1 NEUROIMAGING
David Linhardt, Michael Woletz, Pedro M. Paz-Alonso, Christian Windischberger, Garikoitz Lerma-Usabiaga
{"title":"Biases in Volumetric Versus Surface Analyses in Population Receptive Field Mapping","authors":"David Linhardt,&nbsp;Michael Woletz,&nbsp;Pedro M. Paz-Alonso,&nbsp;Christian Windischberger,&nbsp;Garikoitz Lerma-Usabiaga","doi":"10.1002/hbm.70140","DOIUrl":null,"url":null,"abstract":"<p>Population receptive field (pRF) mapping is a quantitative functional MRI (fMRI) analysis method that links visual field positions with specific locations in the visual cortex. A common preprocessing step in pRF analyses involves projecting volumetric fMRI data onto the cortical surface, typically leading to upsampling of the data. This process may introduce biases in the resulting pRF parameters. Using publicly available analysis containers, we compared pRF maps generated from the original volumetric with those from upsampled surface data. Our results show substantial increases in pRF coverage in the central visual field of upsampled datasets. These effects were consistent across early visual cortex areas V1-3. Further analysis indicates that this bias is primarily driven by the nonlinear relationship between cortical distance and visual field eccentricity, known as cortical magnification. Our results underscore the importance of understanding and addressing biases introduced by processing steps to ensure accurate interpretation of pRF mapping data, particularly in cross-study comparisons.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758450/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70140","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Population receptive field (pRF) mapping is a quantitative functional MRI (fMRI) analysis method that links visual field positions with specific locations in the visual cortex. A common preprocessing step in pRF analyses involves projecting volumetric fMRI data onto the cortical surface, typically leading to upsampling of the data. This process may introduce biases in the resulting pRF parameters. Using publicly available analysis containers, we compared pRF maps generated from the original volumetric with those from upsampled surface data. Our results show substantial increases in pRF coverage in the central visual field of upsampled datasets. These effects were consistent across early visual cortex areas V1-3. Further analysis indicates that this bias is primarily driven by the nonlinear relationship between cortical distance and visual field eccentricity, known as cortical magnification. Our results underscore the importance of understanding and addressing biases introduced by processing steps to ensure accurate interpretation of pRF mapping data, particularly in cross-study comparisons.

Abstract Image

群体感受野映射中体积与表面分析的偏差。
群体感受野(pRF)映射是一种定量功能磁共振成像(fMRI)分析方法,它将视野位置与视觉皮层的特定位置联系起来。pRF分析中常见的预处理步骤包括将体积fMRI数据投射到皮质表面,通常会导致数据上采样。这个过程可能会在产生的pRF参数中引入偏差。使用公开可用的分析容器,我们将原始体积生成的pRF图与上采样表面数据生成的pRF图进行了比较。我们的研究结果表明,在上采样数据集的中央视野中,pRF覆盖率大幅增加。这些效应在早期视觉皮层V1-3区域是一致的。进一步的分析表明,这种偏差主要是由皮层距离和视野偏心率之间的非线性关系驱动的,即皮层放大。我们的研究结果强调了理解和解决由处理步骤引入的偏差的重要性,以确保准确解释pRF制图数据,特别是在交叉研究比较中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Brain Mapping
Human Brain Mapping 医学-核医学
CiteScore
8.30
自引率
6.20%
发文量
401
审稿时长
3-6 weeks
期刊介绍: Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged. Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信