Automatic Aortic Valve Extraction Using Deep Learning with Contrast-Enhanced Cardiac CT Images.

IF 2.4 4区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Soichiro Inomata, Takaaki Yoshimura, Minghui Tang, Shota Ichikawa, Hiroyuki Sugimori
{"title":"Automatic Aortic Valve Extraction Using Deep Learning with Contrast-Enhanced Cardiac CT Images.","authors":"Soichiro Inomata, Takaaki Yoshimura, Minghui Tang, Shota Ichikawa, Hiroyuki Sugimori","doi":"10.3390/jcdd12010003","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study evaluates the use of deep learning techniques to automatically extract and delineate the aortic valve annulus region from contrast-enhanced cardiac CT images. Two approaches, namely, segmentation and object detection, were compared to determine their accuracy.</p><p><strong>Materials and methods: </strong>A dataset of 32 contrast-enhanced cardiac CT scans was analyzed. The segmentation approach utilized the DeepLabv3+ model, while the object detection approach employed YOLOv2. The dataset was augmented through rotation and scaling, and five-fold cross-validation was applied. The accuracy of both methods was evaluated using the Dice similarity coefficient (DSC), and their performance in estimating the aortic valve annulus area was compared.</p><p><strong>Results: </strong>The object detection approach achieved a mean DSC of 0.809, significantly outperforming the segmentation approach, which had a mean DSC of 0.711. Object detection also demonstrated higher precision and recall, with fewer false positives and negatives. The aortic valve annulus area estimation had a mean error of 2.55 mm.</p><p><strong>Conclusions: </strong>Object detection showed superior performance in identifying the aortic valve annulus region, suggesting its potential for clinical application in cardiac imaging. The results highlight the promise of deep learning in improving the accuracy and efficiency of preoperative planning for cardiovascular interventions.</p>","PeriodicalId":15197,"journal":{"name":"Journal of Cardiovascular Development and Disease","volume":"12 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766280/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Development and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jcdd12010003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study evaluates the use of deep learning techniques to automatically extract and delineate the aortic valve annulus region from contrast-enhanced cardiac CT images. Two approaches, namely, segmentation and object detection, were compared to determine their accuracy.

Materials and methods: A dataset of 32 contrast-enhanced cardiac CT scans was analyzed. The segmentation approach utilized the DeepLabv3+ model, while the object detection approach employed YOLOv2. The dataset was augmented through rotation and scaling, and five-fold cross-validation was applied. The accuracy of both methods was evaluated using the Dice similarity coefficient (DSC), and their performance in estimating the aortic valve annulus area was compared.

Results: The object detection approach achieved a mean DSC of 0.809, significantly outperforming the segmentation approach, which had a mean DSC of 0.711. Object detection also demonstrated higher precision and recall, with fewer false positives and negatives. The aortic valve annulus area estimation had a mean error of 2.55 mm.

Conclusions: Object detection showed superior performance in identifying the aortic valve annulus region, suggesting its potential for clinical application in cardiac imaging. The results highlight the promise of deep learning in improving the accuracy and efficiency of preoperative planning for cardiovascular interventions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cardiovascular Development and Disease
Journal of Cardiovascular Development and Disease CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
2.60
自引率
12.50%
发文量
381
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信